
numpy.einsum
是NumPy库提供的一个强大的函数,它可以对多维数组进行高效的计算和操作。einsum
函数的全称为“Einstein Summation”,它的主要功能是对多个数组进行运算并且输出结果。在这篇文章中,我们将通过介绍einsum
函数的使用方式和示例来帮助你更好地理解和运用它。
einsum
函数的基本语法如下:
numpy.einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe',
optimize=False)
其中,subscripts
参数是一个字符串,用于指定计算的方式和输出结果的格式;operands
参数则是一个或多个需要参与计算的数组。其他参数包括:
subscripts
参数是einsum
函数最重要的参数之一,它用于指定计算方式和输出结果的格式。在subscripts
参数中,每个字母都代表一个维度,而逗号则表示不同的数组之间。例如,对于两个形状分别为(3, 4)
和(4, 5)
的二维数组A和B,我们可以使用以下方式来计算它们的矩阵乘积:
import numpy as np
A = np.random.rand(3, 4)
B = np.random.rand(4, 5)
C = np.einsum('ij,jk->ik', A, B)
print(C)
在这个例子中,'ij,jk->ik'
就是subscripts
参数,它表示了矩阵乘法的计算方式。具体来说,'ij'
表示第一个数组(即A)的前两个维度,'jk'
表示第二个数组(即B)的后两个维度,而'->ik'
则表示输出结果的维度应该是前两个维度与后两个维度的交叉相乘。
除了使用单个字母代表维度之外,我们还可以使用多个字母组合来表示某些轴上的求和。例如,如果我们想要计算一个三维数组的所有元素之和,可以使用以下代码:
import numpy as np
A = np.random.rand(3, 4, 5)
s = np.einsum('ijk->', A)
print(s)
在这个例子中,'ijk->'
表示对三维数组A的所有元素求和。注意,'->'
后面没有任何字母,这意味着输出结果不包含任何维度。
einsum
函数不仅可以用于矩阵乘法,还可以广泛地应用到各种线性代数、物理和机器学习问题中。其中一个常见的应用就是计算张量乘积。对于两个形状分别为(n1, n2, ..., nk)
和(m1, m2, ..., mk)
的$k$阶张量$A$和$B$,它们的乘积$C$的形状为$(n_1m_1, n_2m_2, ..., n_km_k)$,它的元素由以下公式给出:
$$C_{i_1m_1 + j_1, i_2m_2 + j_2, ..., i_km_k + j_k} = A_{i_1, i_2, ..., i_k}B_{j_1, j_2, ..., j_k}$$
其中$i_
在NumPy中,我们可以使用einsum
函数来计算张量乘积。以下是一个简单的示例:
import numpy as np
A = np.random.rand(2, 3, 4)
B = np.random.rand(5, 4, 3)
C = np.einsum('ijk,lji->il', A, B)
print(C.shape) # 输出 (2, 5)
在这个示例中,我们定义了两个三维数组A和B,它们的形状分别为(2, 3, 4)
和(5, 4, 3)
。然后,我们使用einsum
函数来计算它们的张量乘积,并将结果存储在数组C中。具体来说,我们使用字符串'ijk,lji->il'
来指定计算方式,其中'ijk'
表示第一个数组(即A)的三个维度,'lji'
表示第二个数组(即B)的三个维度,而'->il'
则表示输出结果应该是形状为(2, 5)
的二维数组。
除了矩阵乘法和张量乘积之外,einsum
函数还可以用于各种元素级别的计算。例如,我们可以使用einsum
函数来计算多个数组的元素乘积。以下是一个简单的示例:
import numpy as np
A = np.array([1, 2, 3])
B = np.array([4, 5, 6])
C = np.array([7, 8, 9])
D = np.einsum('i,i,i->', A, B, C)
print(D) # 输出 104
在这个示例中,我们定义了三个一维数组A、B和C,并且使用einsum
函数来计算它们的元素乘积。具体来说,我们使用字符串'i,i,i->'
来指定计算方式,其中每个'i'
都表示对应数组的元素,而'->'
则表示输出结果不包含任何维度。输出结果为标量值104,它是A、B和C三个数组对应位置元素相乘的总和。
numpy.einsum
函数是一个强大的工具,它可以用于各种复杂的多维数组计算和操作。本文介绍了einsum
函数的语法和参数,以及几个常见的示例。如果你需要处理多维数组数据,或者需要进行一些高级的线性代数运算,那么einsum
函数就是一个非常有用的工具。不过,在编写代码时,我们建议仔细查看einsum
函数的文档,确保正确理解计算方式和输出结果的格式,以避免出现错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14