京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Apache Spark是一个分布式计算框架,设计初衷是为了处理大规模数据集的计算。随着越来越多的企业开始采用Spark进行数据处理和分析,其性能和可靠性变得越来越重要。在这种情况下,底层通信的效率和鲁棒性成为了至关重要的因素。在Spark 2.0中,Spark团队做出了一个重大决策:底层通信从Akka转向Netty。这篇文章将探讨这个决定的背景、原因和影响。
在Spark 1.x版本中,Spark使用Akka作为其底层通信框架。Akka是一种基于Scala语言的消息传递框架,它可以轻松地实现分布式系统中的Actor模型,提供了高度并发的支持。但是,随着Spark的广泛应用,Akka的一些缺点也逐渐显露出来。具体来说,Akka存在两个主要的问题:
针对这些问题,Spark团队考虑替换Akka,寻找更高效、更稳定的通信框架。
Spark团队在选择新的底层通信框架时,考虑了以下因素:
首先,Spark需要一个高效的通信框架,能够快速地传输大量的数据。在大规模的数据集上,通信的开销往往比计算本身还要高昂,因此通信性能的优化对于Spark的性能至关重要。
Netty是一个高性能的网络通信框架,专门设计用于构建高性能、高可靠的网络应用程序。与Akka相比,Netty采用更高效的I/O模型和线程管理方式,可以更好地利用现代计算机系统的多核心和多线程资源,在高并发的场景下保持更好的性能表现。
其次,Spark需要一个健壮、可靠的通信框架,能够保证消息正确性和可靠性。在分布式系统中,由于各种网络异常和故障,消息的传输过程中可能会遇到各种问题。因此,通信框架必须具备足够的健壮性,能够自适应地应对不同的异常情况,并尽可能地保证消息的正确性和可靠性。
Netty提供了诸如心跳检测、连接超时控制、断线重连等多种机制,能够有效地处理各种网络异常和故障,保证通信的可靠性和健壮性。
最后,Spark需要一个活跃的社区和生态环境,能够为其提供良好的支持和反馈。通信框架作为Spark的底层组件之一,必须具备足够的社区支持和生
态环境,能够与Spark社区紧密配合,相互促进。在选择新的通信框架时,必须考虑到其生态环境和社区支持情况,以确保其能够长期稳定地运行,并为Spark提供长期的支持。
Netty作为一个成熟的开源项目,拥有庞大的用户和开发者社区,具备广泛的应用场景和丰富的功能库。与Akka相比,Netty的生态环境更加成熟、稳定,能够为Spark提供更好的支持和反馈。
综上所述,Spark团队最终决定将底层通信从Akka转向Netty,以满足Spark日益增长的性能和可靠性需求。
底层通信框架的改变对于Spark整体的影响十分深远,主要体现在以下几个方面:
由于Netty采用更高效的I/O模型和线程管理方式,通信性能得到了明显的提升。根据Spark官方测试数据显示,使用Netty作为底层通信框架可以使Spark的性能提升10%-30%,特别是在大规模数据处理场景下表现更加优秀。
Netty提供了多种机制来保证消息的正确性和可靠性,如心跳检测、连接超时控制、断线重连等,可以有效地避免消息丢失或延迟等问题,提高系统的健壮性和可靠性。
由于底层通信框架的改变,Spark 2.0需要进行一定的兼容性调整,以适应新的通信框架。具体地,某些Spark API中与Akka相关的部分需要进行修改或替换,以适应Netty的API设计。
Netty相对于Akka而言,具备更加成熟、稳定的生态环境和社区支持,这也为Spark提供了更好的支持和发展空间。同时,一些与Netty相关的生态组件也开始出现,如基于Netty的分布式RPC框架gRPC等,进一步提升了Spark生态环境的质量和稳定性。
总体来说,底层通信框架的转换为Spark带来了明显的性能和可靠性提升,同时也需要进行一定的兼容性调整和生态环境升级,为Spark未来的发展奠定了更加坚实的基础。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27