
神经网络是一种模拟神经系统的计算模型,其核心是通过学习从输入到输出之间的映射关系来解决各种问题。神经网络中的能量函数是一种用于描述神经元状态的数学函数,它可以帮助神经网络在训练过程中找到最优的权重和偏差参数,从而提高模型的性能和准确性。
一、什么是能量函数?
在物理学中,能量是指物体所具有的使其能够进行工作的能力。在神经网络中,我们也可以将神经元的状态看作是一种能量状态,该状态可以用能量函数来描述。能量函数是一个从神经元状态到实数值的映射,它衡量了神经元当前状态的稳定性和可靠性。
二、为什么需要能量函数?
能量函数对于神经网络的学习和优化过程非常重要。在训练过程中,神经网络需要不断调整权重和偏差参数,以最小化损失函数(Loss Function)的值。而这个过程可以通过最小化能量函数的值来实现。
具体来说,如果能量函数的值越小,就说明神经元状态越稳定,反之则说明神经元状态不稳定或存在噪声干扰。因此,我们可以将能量函数作为目标函数,通过梯度下降等优化方法来更新神经元的权重和偏差参数,以达到最小化能量函数的目的。
三、能量函数的定义方式
能量函数的定义方式有多种,其中最常见的是受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)和深度置信网络(Deep Belief Network, DBN)中使用的能量函数。
受限玻尔兹曼机是一种无向图模型,在模型中每个节点都是随机变量,并且相邻节点之间存在连接。RBM的能量函数可以表示为:
$$E(v,h)=-sum_{i=1}^{m}sum_{j=1}^{n}v_i w_{ij} h_j-sum_{i=1}^{m}a_iv_i-sum_{j=1}^{n}b_jh_j$$
其中,$v_i$表示可见层的第$i$个节点状态,$h_j$表示隐藏层的第$j$个节点状态,$a_i$和$b_j$分别表示可见层和隐藏层的偏置项,$w_{ij}$表示连接节点$v_i$和$h_j$之间的权重。该能量函数的值越小,表示RBM的状态越稳定。
深度置信网络是一种由多层受限玻尔兹曼机组成的前馈神经网络。DBN的能量函数可以表示为:
$$E(v,h^{(1)},cdots,h^{(L)})=-sum_{i=1}^{m}sum_{j=1}^{n}v_i w_{ij}^{(1)}h_j^{(1)}-sum_{l=2}^{L}sum_{i=1}^{n_{l-1}}sum_{j=1}^{n_l}h_i^{(l-1)}w_{ij}^{(l)}h_j^{(l)}-sum_{i=1}^{m}a_iv_i-sum_{l=1}^{L}sum_{j=1}^{n_l}b_j^{(l)}h_j^{(l)}$$
其中,$v_i$表示第一层的可见层节点状态,$h_j^{(l)}$表示第$l$层的第$j$个隐藏
层节点状态,$a_i$和$b_j^{(l)}$分别表示第一层和第$l$层的偏置项,$w_{ij}^{(l)}$表示连接第$l-1$层的第$i$个隐藏层节点和第$l$层的第$j$个隐藏层节点之间的权重。该能量函数的值越小,表示DBN的状态越稳定。
四、能量函数的应用
除了在神经网络的训练和优化过程中使用外,能量函数还可以应用于图像分割、聚类、降噪等领域。例如,在图像分割任务中,我们可以将能量函数定义为每个像素点是否属于前景或背景的概率,并通过最小化能量函数的值来实现准确的图像分割。
另外,能量函数也被广泛应用于生成对抗网络(Generative Adversarial Network, GAN)中。GAN是一种基于博弈论的生成模型,其中包含生成器和判别器两个部分,而能量函数则被用来衡量生成器生成的样本与真实数据之间的差距,从而指导生成器的训练过程。
总之,能量函数是神经网络中非常重要的数学工具,它可以帮助神经网络在训练和优化过程中寻找最优解,并且在其他领域中也有广泛的应用。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13