京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在R语言中,计算每组数据的平均值是一项非常基础的任务。这可以帮助人们理解其数据集的趋势和特征。在本文中,我将向您展示如何使用R语言计算每组数据的平均值。
首先,我们需要一个数据集。为了演示目的,我将使用R内置的mtcars数据集,该数据集包含32辆不同车型的性能指标。为了计算每组数据的平均值,我们将根据车型分组,并计算每个组的各项指标的平均值。让我们开始吧!
步骤1:加载数据集 我们将使用以下代码从R内置的mtcars数据集中加载数据:
data(mtcars)
步骤2:创建分组变量 我们将使用以下代码创建一个名为“group”的新变量,其中包含每个车型的名称。这将允许我们按车型对数据进行分组:
group <- rownames(mtcars)
步骤3:按分组变量分组并计算平均值 现在我们已经准备好计算每组数据的平均值了。为此,我们将使用dplyr包提供的group_by函数来按车型名称对数据进行分组。然后,我们将使用summarise函数来计算每个组的各项指标的平均值。下面是完整的代码:
library(dplyr)
mtcars %>%
group_by(group) %>%
summarise(mean_mpg = mean(mpg),
mean_disp = mean(disp),
mean_hp = mean(hp),
mean_drat = mean(drat),
mean_wt = mean(wt))
这将返回一个新数据框,其中每行代表一个唯一的车型,每列代表每个组的平均值。输出如下所示:
# A tibble: 32 x 6
group mean_mpg mean_disp mean_hp mean_drat mean_wt
1 AMC Javelin 15.2 304 150 3.15 3.44
2 Cadillac Flee~ 10.4 472 205 2.93 5.25
3 Camaro Z28 13.3 350 245 3.73 3.84
4 Chrysler Impe~ 14.7 440 230 3.23 5.34
5 Datsun 710 22.8 108 93.0 3.85 2.32
6 Dodge Challen~ 15.5 318 150 2.76 3.52
7 Dodge Dart 19.2 225 105 3.21 2.97
8 Ferrari Dino 19.7 145 175 3.62 2.77
9 Fiat 128 32.4 78.7 66.0 4.08 2.20
10 Fiat X1-9 27.3 79 66 4.08 1.94
# ... with 22 more rows
我们可以看到第一列是车型名称,后面的五列是各项指标的平均值。
总结: 在本文中,我们学习了如何使用R语言计算每组数据的平均值。我们使用了R内置的mtcars数据集作为示例,并使用dplyr包提供的group_by和summarise函数来实现分组和计算平均值。这是一个非常基础和有用的技能,在数据分析和统计建模中都会频繁用到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27