京公网安备 11010802034615号
经营许可证编号:京B2-20210330
时间序列预测是一项重要的任务,许多研究人员和数据科学家都致力于提高其准确性。近年来,一维CNN-LSTM结构已成为时间序列预测中最受欢迎的模型之一,因为它可以同时利用CNN和LSTM的优点。在本文中,我们将探讨如何将CNN和LSTM连接起来以创建一个有效的时间序列预测模型。
首先,我们需要了解一维CNN和LSTM的特点。CNN是一种卷积神经网络,可以处理多维数据,通常用于图像识别等计算机视觉任务。而LSTM是一种循环神经网络,通常用于处理时间序列数据,可以记住长期依赖关系。因此,在时间序列预测中,我们可以使用CNN提取时间序列数据中的空间特征,然后将其传递给LSTM进行时间处理。这种结构称为一维CNN-LSTM结构。
接下来,我们将详细介绍一维CNN-LSTM结构的连接方式。一维CNN和LSTM之间的连接包括两个步骤:首先,使用一维CNN从时间序列数据中提取空间特征;其次,将提取的特征馈送到LSTM进行时间处理。
一维CNN的输入是时间序列数据,输出是具有不同通道的特征图。在一维CNN中,我们通常使用卷积层、池化层和激活函数。卷积层用于提取时间序列数据中的空间特征,池化层用于减小特征图的大小,并提高模型的效率,激活函数则用于引入非线性。
对于一维CNN的卷积层,我们通常使用长度为3或5的卷积核,因为这些卷积核能够捕获时间序列数据中的局部模式。例如,长度为3的卷积核可以捕获时间序列中的每个连续三个数据点的模式。卷积层的输出是一个特征图,其中每个位置都包含了原始时间序列数据中相应区域的特征表示。
将一维CNN提取的特征馈送到LSTM进行时间处理。在时间序列预测中,我们通常使用LSTM来学习时间序列数据中的长期依赖关系。LSTM由三个门控单元组成:遗忘门、输入门和输出门。这些门控单元允许LSTM根据时间序列数据的不同部分调整其内部状态,以记住和忘记特定信息。
在一维CNN-LSTM结构中,我们可以通过将一维CNN的输出作为LSTM的输入来连接这两个模型。在这种情况下,每个时间步的输入将是一维CNN的输出,而不是原始的时间序列数据。LSTM的输出通常是一个维度较小的向量,可以用于预测下一个时间步的值或者未来若干个时间步的值。
总结:
一维CNN-LSTM结构是一种有效的时间序列预测方法,它可以同时利用CNN和LSTM的优点。在一维CNN-LSTM结构中,一维CNN用于提取时间序列数据的空间特征,而LSTM则用于处理时间信息,这两个模型通过将一维CNN的输出作为LSTM的输入来连接。这种结构在时间序列预测中已被广泛使用,并取得了良好的
效果。例如,在气象领域,可以使用一维CNN-LSTM结构对温度、湿度等时间序列数据进行预测;在金融领域,可以使用它对市场价格、交易量等数据进行预测。
除了一维CNN-LSTM结构,还有其他类型的深度学习模型可以用于时间序列预测,如Transformer、GRU等。根据具体问题和数据集的不同,选择适合的模型结构非常重要。
总之,一维CNN-LSTM结构是一种有效的时间序列预测方法,它利用了CNN提取空间特征和LSTM处理时间信息的优点。连接这两个模型需要将一维CNN的输出作为LSTM的输入,并通过LSTM来学习时间序列数据中的长期依赖关系。该结构已被广泛应用于各个领域的时间序列预测,并取得了良好的表现。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27