
一个完整的数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。 完整的数据分析流程:1、业务建模。2、经验分析。3、数据准备。4、数据处理。5、数据分析与展现。6、专业报告。7、持续验证与跟踪。
作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。
1. 数据采集
了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。比如:
Omniture中的Prop变量长度只有100个字符,在数据采集部署过程中就不能把含有大量中文描述的文字赋值给Prop变量(超过的字符会被截断)。
在Webtrekk323之前的Pixel版本,单条信息默认最多只能发送不超过2K的数据。当页面含有过多变量或变量长度有超出限定的情况下,在保持数据收集的需求下,通常的解决方案是采用多个sendinfo方法分条发送;而在325之后的Pixel版本,单条信息默认最多可以发送7K数据量,非常方便的解决了代码部署中单条信息过载的问题。(Webtrekk基于请求量付费,请求量越少,费用越低)。
当用户在离线状态下使用APP时,数据由于无法联网而发出,导致正常时间内的数据统计分析延迟。直到该设备下次联网时,数据才能被发出并归入当时的时间。这就产生了不同时间看相同历史时间的数据时会发生数据有出入。
在数据采集阶段,数据分析师需要更多的了解数据生产和采集过程中的异常情况,如此才能更好的追本溯源。另外,这也能很大程度上避免“垃圾数据进导致垃圾数据出”的问题。
2.数据存储
无论数据存储于云端还是本地,数据的存储不只是我们看到的数据库那么简单。比如:
在数据存储阶段,数据分析师需要了解数据存储内部的工作机制和流程,最核心的因素是在原始数据基础上经过哪些加工处理,最后得到了怎样的数据。由于数据在存储阶段是不断动态变化和迭代更新的,其及时性、完整性、有效性、一致性、准确性很多时候由于软硬件、内外部环境问题无法保证,这些都会导致后期数据应用问题。
3.数据提取
数据提取是将数据取出的过程,数据提取的核心环节是从哪取、何时取、如何取。
在数据提取阶段,数据分析师首先需要具备数据提取能力。常用的Select From语句是SQL查询和提取的必备技能,但即使是简单的取数工作也有不同层次。第一层是从单张数据库中按条件提取数据的能力,where是基本的条件语句;第二层是掌握跨库表提取数据的能力,不同的join有不同的用法;第三层是优化SQL语句,通过优化嵌套、筛选的逻辑层次和遍历次数等,减少个人时间浪费和系统资源消耗。
其次是理解业务需求的能力,比如业务需要“销售额”这个字段,相关字段至少有产品销售额和产品订单金额,其中的差别在于是否含优惠券、运费等折扣和费用。包含该因素即是订单金额,否则就是产品单价×数量的产品销售额。
4.数据挖掘
数据挖掘是面对海量数据时进行数据价值提炼的关键,以下是算法选择的基本原则:
在数据挖掘阶段,数据分析师要掌握数据挖掘相关能力。一是数据挖掘、统计学、数学基本原理和常识;二是熟练使用一门数据挖掘工具,Clementine、SAS或R都是可选项,如果是程序出身也可以选择编程实现;三是需要了解常用的数据挖掘算法以及每种算法的应用场景和优劣差异点。
5.数据分析
数据分析相对于数据挖掘更多的是偏向业务应用和解读,当数据挖掘算法得出结论后,如何解释算法在结果、可信度、显著程度等方面对于业务的实际意义,如何将挖掘结果反馈到业务操作过程中便于业务理解和实施是关键。
6.数据展现
数据展现即数据可视化的部分,数据分析师如何把数据观点展示给业务的过程。数据展现除遵循各公司统一规范原则外,具体形式还要根据实际需求和场景而定。基本素质要求如下:
7.数据应用
数据应用是数据具有落地价值的直接体现,这个过程需要数据分析师具备数据沟通能力、业务推动能力和项目工作能力。
数据沟通能力。深入浅出的数据报告、言简意赅的数据结论更利于业务理解和接受,打比方、举例子都是非常实用的技巧。
业务推动能力。在业务理解数据的基础上,推动业务落地实现数据建议。从业务最重要、最紧急、最能产生效果的环节开始是个好方法,同时要考虑到业务落地的客观环境,即好的数据结论需要具备客观落地条件。
项目工作能力。数据项目工作是循序渐进的过程,无论是一个数据分析项目还是数据产品项目,都需要数据分析师具备计划、领导、组织、控制的项目工作能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28