京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1. 模型介绍
1898 年,美国有一个叫 Elmo Lewis 的人,提出了 漏斗模型的概念,后来被总结为 AIDA模型,也称为「 爱达」公式,首字母分别代表:
(1)注意 Attention
(2)兴趣 Interest
(3)欲望 Desire
(4)行动 Action
从吸引客户的注意,到引起客户的兴趣,再到产生拥有的欲望,最后形成购买的行动,每个环节都会有客户流失,越靠后的环节,客户数量往往就越少,画出来的图形,就像一个漏斗。
2. 应用举例
从销售漏斗图的形状,我们就能比较直观地看到每个环节的转化情况。通过横向或纵向的对比,发现业务中可能存在的问题,然后进一步分析原因,从而有针对性地提出解决问题的建议。
一个好的模型,可以促进沟通和行动,从而产生良性循环的好结果。
你可以根据自身业务的实际情况,细分为更多的环节。
下面是用 Python 绘制销售漏斗图的代码:
# 导入库
importpyecharts.options asopts
frompyecharts.charts importFunnel
# 定义数据
x_data = [ ‘目标客户’, ‘意向客户’, ‘订购客户’]
y_data = [ 100, 80, 20]
data = [[x_data[i], y_data[i]] fori inrange(len(x_data))]
# 画漏斗图
c = (
Funnel(init_opts=opts.InitOpts(width= “1000px”, height= “600px”))
.add(
# 系列名称
series_name= “”,
# 系列数据项
data_pair=data,
# 数据图形间距
gap= 2,
# 标签配置项
label_opts=opts.LabelOpts(is_show= True, position= “inside”, font_size= 18),
# 图元样式配置项
itemstyle_opts=opts.ItemStyleOpts(color= ‘#00589F’, border_width= 1),
)
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title= “销售漏斗模型”, pos_left= ‘center’,
title_textstyle_opts=opts.TextStyleOpts(font_size= 26)),
# 隐藏图例
legend_opts=opts.LegendOpts(is_show= False)
)
.render( “销售漏斗模型.html”)
)
3. 分析思考
在应用分析思维模型的时候,我们不要停留在问题的表面,而要透过现象看本质,思考模型背后的逻辑。
(1)过程重于结果
结果是由过程产生的,如果每个过程都做好了,那么结果通常不会太差。
(2)预防重于纠错
在问题发生之前,提前预测到可能出现的问题,并采取相应的预防措施,这比问题发生之后再进行纠错更加重要。
有一个「扁鹊三兄弟」的故事,据说扁鹊的大哥医术最高明,因为他能预防疾病的发生。
(3)该说的要说到
让过程变得制度化、规范化、程序化。
如果不能实行法治,那么过程就会变得随意。
(4)说到的要做到
凡是制度化的内容,都必须严格执行。
如果有制度却不执行,那么还不如没有制度。
(5)做到的要见到
凡是已经发生的过程,都要留下记录。
如果没有记录,那么就不利于管理决策。
(6)让流程标准化
在深入细致研究的基础上,借鉴优秀的经验,制定标准化的流程。
如果没有标准化的流程,那么就难以沉淀成功的经验。
小结
销售漏斗模型,是科学反映销售效率的一个模型,本质上是对销售过程的细化管理,可以帮助我们把流程标准化并沉淀下来。
最后,提醒一下: 任何一个分析思维模型,都不可能解决所有的问题。我们应该根据实际情况,把更多的时间和精力,用来灵活地选择和应用多种分析思维模型,从而做出更加科学的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28