
数据分析的作用
单纯的谈数据分析的作用其实意义并不大,所以在谈论作用之前我们首先的考虑是受众对象,比如对个人而言,因为身体传感设备,让我们的日常锻炼、身体素质等各项指标都得以数据化,最终完成个人身体和生活习性的自我量化,进而改进调节个人日常生活规律,让我们更好的生活。而对于企业而言,数据分析的作用则主要体现在三大领域:一是对业务的改进优化;二是帮助业务发现机会;三是创造新的商业价值。
改进优化业务方面,通俗的说就是让业务变得更好。让业务变得更好对企业而言主要体现在两大方面:一是对企业用户体验的改进方面,优化原有业务流程,为用户提供更好的用户体验。例如:早些年QQ游戏大厅对玩家进入游戏的流程再造,将原有的游戏进入登录环节从4个变更为3个。二是体现在对企业资源的合理化分配利用上,更合理的优化配置企业资源,进而达到效益最大化的目的。例如我们企业日常运营中的广告投放以及内部广告资源分配优化等就属于此范畴,一方面利用精准化广告投放,提高广告投放效率,另一方面根据广告引流客户量的大小做好企业资源分配,进而提高用户体验,提升用户留存率。
帮助业务发现机会主要是利用数据查找发现人们思维上的盲点,进而发现新的业务机会的过程。例如游戏企业常在游戏中埋点记录玩家的游戏操作行为数据以及关键节点进程数据,以达到控制游戏进度和难易度的目的,而这个过程中可能会发现新的业务机会,进而扩展出譬如游戏安全操作标准及游戏安全产品之类的新业务渗透点。
创造新的商业价值模式方面,主要是在数据价值的基础上形成新的商业模式,将数据价值直接转化为金钱模式或离金钱更近的过程。例如2014年炒的比较火的个人征信业务就属于此类,腾讯、阿里巴巴等企业就利用其拥有广泛用户数据的基础上,分别成立了腾讯征信、芝麻信用等新的业务关联企业,而这些征信企业进而衍生出相关“刷脸”业务,将其扩展到租车、租房等领域。
此外,数据分析在企业运营过程中还发挥着“医生”般的作用,一方面提供对企业日常运营活动的体检服务,对业务运营过程中可能会出现的问题作预警,将问题处理在萌芽状态,防患于未来。例如企业业务扩充过程中的投资合并,对投资合并对象的背景和发展历史等情况的尽职调查就属于此类,另一方面则提供企业日常运营过程中的“巡诊就诊”服务,找出企业日常运营中的问题。揭露过去&预测未来。
数据分析的工作内容
5W1H基本回答了数据分析的工作内容,What(什么)——分析什么数据?When(何时)——什么时候数据分析?Where(那里)——从那里获取数据?Which(那个)——采用什么分析工具处理分析数据?Who(谁)——采用那个供应商的基础数据服务,帮你构建数据产品或处理数据?How(怎样)——如何进行数据分析?
·What 分析什么数据
分析什么数据与数据分析的目的有关,通常确定问题后,然后根据问题收集相应的数据,在对应的数据框架体系中形成对应的决策辅助策略,这个过程也是一个反复博弈的过程。
·When 什么时候数据分析
数据分析基本上贯彻了业务运营的各个环节,也就是在业务运营过程中要做到全程数据跟踪。例如电子商务中的商品选择、商品陈列、更新、广告投放引流跟踪、效果评估、客户跟踪等等都需要数据支撑。
·Where 从那里获取数据
企业通常的数据来源可分为两大类:内部来源数据和外部来源数据。对于互联网企业而言,内部数据主要包括网络日志相关数据、客户信息数据、业务流程数据等,而外部数据则主要包括各类第三方监测数据、企业市调数据、行业规模数据等。
·Which 那个数据分析工具处理数据
数据处理分析的工具非常多,也非常的细。用什么样的工具常常取决于企业的具体需求,不管怎样,相对于各类工具而言,操作工具的人更加重要。通常,企业在人与对应的工具上的投入比大约为9:1,也就是说当你投入10元钱在数据分析工具上的时候,那么你的企业对入在对应的人上的成本大约90元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10