京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的作用
单纯的谈数据分析的作用其实意义并不大,所以在谈论作用之前我们首先的考虑是受众对象,比如对个人而言,因为身体传感设备,让我们的日常锻炼、身体素质等各项指标都得以数据化,最终完成个人身体和生活习性的自我量化,进而改进调节个人日常生活规律,让我们更好的生活。而对于企业而言,数据分析的作用则主要体现在三大领域:一是对业务的改进优化;二是帮助业务发现机会;三是创造新的商业价值。
改进优化业务方面,通俗的说就是让业务变得更好。让业务变得更好对企业而言主要体现在两大方面:一是对企业用户体验的改进方面,优化原有业务流程,为用户提供更好的用户体验。例如:早些年QQ游戏大厅对玩家进入游戏的流程再造,将原有的游戏进入登录环节从4个变更为3个。二是体现在对企业资源的合理化分配利用上,更合理的优化配置企业资源,进而达到效益最大化的目的。例如我们企业日常运营中的广告投放以及内部广告资源分配优化等就属于此范畴,一方面利用精准化广告投放,提高广告投放效率,另一方面根据广告引流客户量的大小做好企业资源分配,进而提高用户体验,提升用户留存率。
帮助业务发现机会主要是利用数据查找发现人们思维上的盲点,进而发现新的业务机会的过程。例如游戏企业常在游戏中埋点记录玩家的游戏操作行为数据以及关键节点进程数据,以达到控制游戏进度和难易度的目的,而这个过程中可能会发现新的业务机会,进而扩展出譬如游戏安全操作标准及游戏安全产品之类的新业务渗透点。
创造新的商业价值模式方面,主要是在数据价值的基础上形成新的商业模式,将数据价值直接转化为金钱模式或离金钱更近的过程。例如2014年炒的比较火的个人征信业务就属于此类,腾讯、阿里巴巴等企业就利用其拥有广泛用户数据的基础上,分别成立了腾讯征信、芝麻信用等新的业务关联企业,而这些征信企业进而衍生出相关“刷脸”业务,将其扩展到租车、租房等领域。
此外,数据分析在企业运营过程中还发挥着“医生”般的作用,一方面提供对企业日常运营活动的体检服务,对业务运营过程中可能会出现的问题作预警,将问题处理在萌芽状态,防患于未来。例如企业业务扩充过程中的投资合并,对投资合并对象的背景和发展历史等情况的尽职调查就属于此类,另一方面则提供企业日常运营过程中的“巡诊就诊”服务,找出企业日常运营中的问题。揭露过去&预测未来。
数据分析的工作内容
5W1H基本回答了数据分析的工作内容,What(什么)——分析什么数据?When(何时)——什么时候数据分析?Where(那里)——从那里获取数据?Which(那个)——采用什么分析工具处理分析数据?Who(谁)——采用那个供应商的基础数据服务,帮你构建数据产品或处理数据?How(怎样)——如何进行数据分析?
·What 分析什么数据
分析什么数据与数据分析的目的有关,通常确定问题后,然后根据问题收集相应的数据,在对应的数据框架体系中形成对应的决策辅助策略,这个过程也是一个反复博弈的过程。
·When 什么时候数据分析
数据分析基本上贯彻了业务运营的各个环节,也就是在业务运营过程中要做到全程数据跟踪。例如电子商务中的商品选择、商品陈列、更新、广告投放引流跟踪、效果评估、客户跟踪等等都需要数据支撑。
·Where 从那里获取数据
企业通常的数据来源可分为两大类:内部来源数据和外部来源数据。对于互联网企业而言,内部数据主要包括网络日志相关数据、客户信息数据、业务流程数据等,而外部数据则主要包括各类第三方监测数据、企业市调数据、行业规模数据等。
·Which 那个数据分析工具处理数据
数据处理分析的工具非常多,也非常的细。用什么样的工具常常取决于企业的具体需求,不管怎样,相对于各类工具而言,操作工具的人更加重要。通常,企业在人与对应的工具上的投入比大约为9:1,也就是说当你投入10元钱在数据分析工具上的时候,那么你的企业对入在对应的人上的成本大约90元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27