
从本质上看,几乎所有工作都和数据有关系,都或多或少需要一些数据分析方法。但数据本身是有门槛的,很多人上学的时候就怕数学课,更不要说复杂的理论了。因此,所谓基础数据分析方法,应该是:
总之,人人能用的,才是基础方法。
基于这个理念,我们为大家整理了九种基础分析方法,简单又好用。
最基础的分析方法,可以从一个指标开始,这就是“周期性分析法”。
所谓“周期性分析法”,操作上非常简单,就是把一个指标的观察时间拉长,看它是否有周期变化规律。
这种方法分析简单,但是非常实用。因为新手经常因为不懂看周期变化,引发笑话。诸如:
很多时候,我们看的指标是总体指标,而总体指标是由若干部分组成的,比如:
因此看到一个总体指标以后,可以根据它的组成部分,对总体做拆解,了解各部分组成,是为结构分析法(分析总体的内部结构)。
结构分析法在很多时候都好用,比如问:“为什么业绩下滑呀!”答:“因为XX区域没有做好!”通过看结构,能很快找到责任人。
除了单纯地看结构,人们也喜欢做排名,区分个高中低,这就是分层分析法。
很多同学会把分层和结构搞混,大家只要记得以下两句:
这三种方法,是基础中的基础。一来,它们都是在分析一个指标,二来,它们都是基于事实陈述,不需要啥计算。当我们初到一个公司,初接触一个新数据,都可以用这三种方法,建立基础认知。
矩阵分析法的最大优势,在于:直观易懂。可以很容易从两个指标的交叉对比中发现问题。特别是当这两个指标是投入/成本指标的时候,成本高+收入低,成本低+收入与高两个类别,能直接为业务指示出改进方向,因此极大避免了:“不知道如何评价好坏”的问题。
很多咨询公司都喜欢用这种方法,类似KANO模型或者波士顿矩阵,本质就是找到了两个很好的评价指标,通过两指标交叉构造矩阵,对业务分类。分类的区分效果很好,就广为流传了。
当分析指标变得更多的时候,最重要的工作,就是弄清楚:到底这些指标是什么关系。典型的关系有两种。
几个指标相互独立,且是上一级指标的组成部分。比如我们常说的:业绩=客户数*消费率*客单价
在这个公式里:
此时,客户数、消费率、客单价就是并列的三个指标,并且都是业绩的子指标。
几个指标相互关联,有前后顺序关系。比如我们常说的:新注册用户数=广告浏览人数*落地页转化率*注册页转化率。
此时,广告页、落地页、注册页的指标相互关联,用户要一步步走。
这两种关系,分别对应两种基础分析方法:
指标拆解法,一般在经营分析中使用较多。举个简单的例子,一个小程序商城,上月销售业绩150万,本月120万。如果只看结果,除了少了30万以外啥也不知道。但是进行指标拆解以后,就能发现很多东西(如下图)
拆解以后可以明显看出:本月虽然注册用户人数增加了,但是消费率大幅度降低,所以收入少了。后续可以进一步思考:如何提高消费率。
漏斗分析法,则在互联网产品/推广/运营分析中使用较多,因为互联网产品能记录较多用户数据,因此可以呈现整个用户转化流程,从而进行分析。
举个简单例子,在网上看到一个商品广告,我们很感兴趣,点击进入购买。需要经历广告页→详情页→购物车→支付几个步骤,每多一个步骤,就会有一些用户流失,如同漏斗一样。
此时可以用一个转化漏斗,形象地表示这种关系(如下图)。
有了转化漏斗以后,就能进一步基于漏斗分析,从而指导业务改善:
当然,还有一些指标,可能不是直接的并行/串行关系,但是在工作中,也很想知道他们有没有关系,比如:
此时,需要掌握相关分析法。注意:指标之间可能天生存在相关关系。常见的天生相关,有三种形态:
但是要注意:相关不等于因果,到底如何解读相关系数,需要结合具体业务含义,不能胡乱下结论哦。
以上所有方法,都是基于数据指标计算,但实际业务中,很多关系并不能直接用数据指标表示。比如:
社区店/私域流量/刮风下雨,很难用一个数据指标来衡量。但这些因素,又确实会对企业经营产生影响,该怎么分析呢?这就需要采用:标签分析法。
举个简单的例子,南方某省,8月份经常下暴雨。大家都觉得:下雨会影响门店业绩。那么怎么分析呢?按照五步法,可以针对该省份门店,做分析如下图:
那么可以得出结论:下雨对业绩影响不大,这就做完了。
注意,上边的小例子里,标签做的很粗糙,只有简单粗暴的下雨/没下雨两类。除了下雨以外,还可能有台风、冰雹、高温等等情况。因此,做标签的精细程度,决定了标签分析的准确度。而能否选取到合适的标签,则考验的是分析人员对业务的理解程度。
到这里,一共介绍了八种基础方法。在实际工作中,一般都是多种方法综合使用的。因为业务提的问题会很复杂,很有可能涉及多个指标、多个标签。此时千头万绪,要理清思路,就得祭出第九种方法:MECE法。
MECE是(Mutually Exclusive Collectively Exhaustive)的缩写,指的是“相互独立,完全穷尽”的分类原则。通过MECE方法对问题进行分类,能做到清晰准确,从而容易找到答案。
MECE法是基础分析和高级分析的分水岭,也是从基础提升到高级的通道。所有复杂的问题,都需要经过认真的梳理和分解,才能成为一个个能解决的小问题。所谓的业务分析模型,其实就是对业务问题的MECE分解。
当然,肯定也有同学好奇:掌握了这九种方法以后,还可以怎么深入呢?一般有三条深入路线,可以进行深入分析。
业务模型,用来解决:定义模糊、数据贫瘠、需指导业务的问题。
比如业务在纠结:
这些问题听起来简单,其实定义非常模糊,什么算好?怎么叫起作用?不发钱的激励真的有用?各种问题错综复杂,且很有可能掺杂了业务部门自己的小心思。因此,需要细细的梳理业务逻辑,推导出可行的解题逻辑。
算法模型,用来解决:定义清晰、数据丰富、计算过程复杂的问题。
比如,高价值用户识别问题,业务上已经定义清楚了:
此时,可以用各种算法来建模了。建模的目的,不是为了增加分析深度,而是提高从分析到业务应用的效率。有了相对准确的模型判断,业务可以通过CDP+MA,自动触发营销规则,不需要每次都写ppt写很久。算法模型需要一些
统计推断方法,用来解决:定义清晰、没有数据、需测试收集数据的问题。
比如:要上一个新版本产品,业务已经定义了:新版本要提升用户的人均在线时长(均值问题),现在要做测试,从两个预备版本里选一个。此时要用:双总体均值比较假设检验的方法。
当然,实际问题会更复杂,考虑各种控制变量、假设前提,还要考虑系统开发、数据采集方案,不单单靠分析师解决。
以上就是数据掌握了基础方法以后,深入学习的三个路线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11