
从本质上看,几乎所有工作都和数据有关系,都或多或少需要一些数据分析方法。但数据本身是有门槛的,很多人上学的时候就怕数学课,更不要说复杂的理论了。因此,所谓基础数据分析方法,应该是:
总之,人人能用的,才是基础方法。
基于这个理念,我们为大家整理了九种基础分析方法,简单又好用。
最基础的分析方法,可以从一个指标开始,这就是“周期性分析法”。
所谓“周期性分析法”,操作上非常简单,就是把一个指标的观察时间拉长,看它是否有周期变化规律。
这种方法分析简单,但是非常实用。因为新手经常因为不懂看周期变化,引发笑话。诸如:
很多时候,我们看的指标是总体指标,而总体指标是由若干部分组成的,比如:
因此看到一个总体指标以后,可以根据它的组成部分,对总体做拆解,了解各部分组成,是为结构分析法(分析总体的内部结构)。
结构分析法在很多时候都好用,比如问:“为什么业绩下滑呀!”答:“因为XX区域没有做好!”通过看结构,能很快找到责任人。
除了单纯地看结构,人们也喜欢做排名,区分个高中低,这就是分层分析法。
很多同学会把分层和结构搞混,大家只要记得以下两句:
这三种方法,是基础中的基础。一来,它们都是在分析一个指标,二来,它们都是基于事实陈述,不需要啥计算。当我们初到一个公司,初接触一个新数据,都可以用这三种方法,建立基础认知。
矩阵分析法的最大优势,在于:直观易懂。可以很容易从两个指标的交叉对比中发现问题。特别是当这两个指标是投入/成本指标的时候,成本高+收入低,成本低+收入与高两个类别,能直接为业务指示出改进方向,因此极大避免了:“不知道如何评价好坏”的问题。
很多咨询公司都喜欢用这种方法,类似KANO模型或者波士顿矩阵,本质就是找到了两个很好的评价指标,通过两指标交叉构造矩阵,对业务分类。分类的区分效果很好,就广为流传了。
当分析指标变得更多的时候,最重要的工作,就是弄清楚:到底这些指标是什么关系。典型的关系有两种。
几个指标相互独立,且是上一级指标的组成部分。比如我们常说的:业绩=客户数*消费率*客单价
在这个公式里:
此时,客户数、消费率、客单价就是并列的三个指标,并且都是业绩的子指标。
几个指标相互关联,有前后顺序关系。比如我们常说的:新注册用户数=广告浏览人数*落地页转化率*注册页转化率。
此时,广告页、落地页、注册页的指标相互关联,用户要一步步走。
这两种关系,分别对应两种基础分析方法:
指标拆解法,一般在经营分析中使用较多。举个简单的例子,一个小程序商城,上月销售业绩150万,本月120万。如果只看结果,除了少了30万以外啥也不知道。但是进行指标拆解以后,就能发现很多东西(如下图)
拆解以后可以明显看出:本月虽然注册用户人数增加了,但是消费率大幅度降低,所以收入少了。后续可以进一步思考:如何提高消费率。
漏斗分析法,则在互联网产品/推广/运营分析中使用较多,因为互联网产品能记录较多用户数据,因此可以呈现整个用户转化流程,从而进行分析。
举个简单例子,在网上看到一个商品广告,我们很感兴趣,点击进入购买。需要经历广告页→详情页→购物车→支付几个步骤,每多一个步骤,就会有一些用户流失,如同漏斗一样。
此时可以用一个转化漏斗,形象地表示这种关系(如下图)。
有了转化漏斗以后,就能进一步基于漏斗分析,从而指导业务改善:
当然,还有一些指标,可能不是直接的并行/串行关系,但是在工作中,也很想知道他们有没有关系,比如:
此时,需要掌握相关分析法。注意:指标之间可能天生存在相关关系。常见的天生相关,有三种形态:
但是要注意:相关不等于因果,到底如何解读相关系数,需要结合具体业务含义,不能胡乱下结论哦。
以上所有方法,都是基于数据指标计算,但实际业务中,很多关系并不能直接用数据指标表示。比如:
社区店/私域流量/刮风下雨,很难用一个数据指标来衡量。但这些因素,又确实会对企业经营产生影响,该怎么分析呢?这就需要采用:标签分析法。
举个简单的例子,南方某省,8月份经常下暴雨。大家都觉得:下雨会影响门店业绩。那么怎么分析呢?按照五步法,可以针对该省份门店,做分析如下图:
那么可以得出结论:下雨对业绩影响不大,这就做完了。
注意,上边的小例子里,标签做的很粗糙,只有简单粗暴的下雨/没下雨两类。除了下雨以外,还可能有台风、冰雹、高温等等情况。因此,做标签的精细程度,决定了标签分析的准确度。而能否选取到合适的标签,则考验的是分析人员对业务的理解程度。
到这里,一共介绍了八种基础方法。在实际工作中,一般都是多种方法综合使用的。因为业务提的问题会很复杂,很有可能涉及多个指标、多个标签。此时千头万绪,要理清思路,就得祭出第九种方法:MECE法。
MECE是(Mutually Exclusive Collectively Exhaustive)的缩写,指的是“相互独立,完全穷尽”的分类原则。通过MECE方法对问题进行分类,能做到清晰准确,从而容易找到答案。
MECE法是基础分析和高级分析的分水岭,也是从基础提升到高级的通道。所有复杂的问题,都需要经过认真的梳理和分解,才能成为一个个能解决的小问题。所谓的业务分析模型,其实就是对业务问题的MECE分解。
当然,肯定也有同学好奇:掌握了这九种方法以后,还可以怎么深入呢?一般有三条深入路线,可以进行深入分析。
业务模型,用来解决:定义模糊、数据贫瘠、需指导业务的问题。
比如业务在纠结:
这些问题听起来简单,其实定义非常模糊,什么算好?怎么叫起作用?不发钱的激励真的有用?各种问题错综复杂,且很有可能掺杂了业务部门自己的小心思。因此,需要细细的梳理业务逻辑,推导出可行的解题逻辑。
算法模型,用来解决:定义清晰、数据丰富、计算过程复杂的问题。
比如,高价值用户识别问题,业务上已经定义清楚了:
此时,可以用各种算法来建模了。建模的目的,不是为了增加分析深度,而是提高从分析到业务应用的效率。有了相对准确的模型判断,业务可以通过CDP+MA,自动触发营销规则,不需要每次都写ppt写很久。算法模型需要一些
统计推断方法,用来解决:定义清晰、没有数据、需测试收集数据的问题。
比如:要上一个新版本产品,业务已经定义了:新版本要提升用户的人均在线时长(均值问题),现在要做测试,从两个预备版本里选一个。此时要用:双总体均值比较假设检验的方法。
当然,实际问题会更复杂,考虑各种控制变量、假设前提,还要考虑系统开发、数据采集方案,不单单靠分析师解决。
以上就是数据掌握了基础方法以后,深入学习的三个路线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28