
自2018年开始,数据分析师的岗位就开始火热,很多培训机构开始疯狂的鼓吹数据分析人口如何稀缺以及数据分析如何高薪。在看招聘机会的时候,很多JD岗位描述里具备Python,数据挖掘算法等,所以很多人花了大量的时间学习Python和机器学习,其实工作中可能几乎都用不到。JD也多半是用人部门说要招一个数据分析师,然后HR直接从某处粘贴过来的,造成了应聘者的困惑,不知道具体是干嘛的。
接下来给大家聊下互联网数据分析师的类型以及未来潜在的发展路径。
要聊数据分析师,首先得从数据开始,了解互联网公司的数据流程,可以参照下方的这个流程图,通过流程我们可以识别数据分析师的种类。
通过这个图由下往上我们可以看到三大类型的数据分析师:数据开发层,数据智能应用层,业务解读层。02程序猿-数据开发类
数据开发是偏技术序列的数据分析师。这里的岗位主要分为两类:
一类是数据仓库型同学。工作内容涉及数据底层表,数据模型搭建,进行ETL转换建立维度表,针对业务线建立hive报表,还有spark与hadoop这种大数据平台的分析师。
还有一类是偏算法与数据挖掘的分析师。就是主要根据需要建立一些用户的打标签体系,比如根据用户的消费维度,浏览维度等等进行打标签。还有一块是根据用户相关标签进行推荐算法的应用。
相对来说数仓的技术门槛略低一些,人数相对较多,这块的发展路径就是技术序列往上爬,到数据库,算法经理/总监等。
数据产品部分属于数据应用层,根据业务方的需求,将一些常见看数取数的以产品的形式呈现。这块也主要分为3种类型:
一种是提供查数取数的平台化数据产品,对象是分析师的大数据的取数平台(主要是SQL语言来查询),对象是运营和业务人员的报表与数据集取数平台(通过几个维度字段筛选)。
还有一种是将常见看数的场景以可视化的平台展现(方便业绩走势和区域达成,搜索词热度排名与收益情况等),像淘宝就有提供的针对商家的生意参谋这种的数据产品,自媒体平台像微信公众号也有数据产品看自己文章的一些维度的数据图。
▲ 图片来源百度:淘宝给平台商家用的生意参谋▲ 图片来源百度:微信公众号提供给创作者的文章数据分析工具最后一块是现在比较火的数据中台,将各业务线数据打通,然后提供统一的数据标签接口,携程内部是由数据智能部中在打造这一块,属于在发展阶段。
这块的发展路径可以走数据产品经理路线,是既要有数据分析技能也要有产品设计管理的技能,比较新兴的一块领域。
数据的解读层就是目前人数需求最多的偏业务型的数据分析师,也是入门门槛最低的岗位。这种数据分析师由于相对技术的同学来说是靠近业务的,业务的领域更多的是跟对接需求的领域是相关的,领域取决于业务模块类型。
业务型分析师的主要工作内容我觉得理解成一句话就是数据需求项目管理,对接业务线的需求方,然后沟通相关需求,了解业务背景,最后通过数据处理与分析输出结果,最后与相关方确认结论后,实现项目交付。
日常3块工作主要是:
1- 临时性的取数;这是一个数据分析师刚到一家公司起步的时候做的最多的工作,首先是一些略复杂的取数需求,业务方自己能力无法实现,也有来自老板想要看一些数据,在这个同时可以熟悉一些数据口径,和对于数据背后业务意义有更多的理解。
2- 建立指标监控体系;接地气一点就是做报表。根据业务线KPI关心的内容建立指标监控报表,输出周期性的业务周报月报。
3- 数据分析项目,主要是业务线的异常原因分析,加上一些数据分析专项项目(比如一些场景的描述性统计洞察,一些基本的回归预测模型)。
从工作场景基本上可以看出,绝大部分场景是SQL取数/或者数据集取数,然后excel可以作图制作报告,很少的建模场景会用到Python。
没有那么技术,也没有那么业务,所以好入门,也很容易被替代,想成为数据分析专家,重点是懂业务的基础上加一些分析思路,这才是灵魂。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14