京公网安备 11010802034615号
经营许可证编号:京B2-20210330
自2018年开始,数据分析师的岗位就开始火热,很多培训机构开始疯狂的鼓吹数据分析人口如何稀缺以及数据分析如何高薪。在看招聘机会的时候,很多JD岗位描述里具备Python,数据挖掘算法等,所以很多人花了大量的时间学习Python和机器学习,其实工作中可能几乎都用不到。JD也多半是用人部门说要招一个数据分析师,然后HR直接从某处粘贴过来的,造成了应聘者的困惑,不知道具体是干嘛的。
接下来给大家聊下互联网数据分析师的类型以及未来潜在的发展路径。
要聊数据分析师,首先得从数据开始,了解互联网公司的数据流程,可以参照下方的这个流程图,通过流程我们可以识别数据分析师的种类。
通过这个图由下往上我们可以看到三大类型的数据分析师:数据开发层,数据智能应用层,业务解读层。02程序猿-数据开发类
数据开发是偏技术序列的数据分析师。这里的岗位主要分为两类:
一类是数据仓库型同学。工作内容涉及数据底层表,数据模型搭建,进行ETL转换建立维度表,针对业务线建立hive报表,还有spark与hadoop这种大数据平台的分析师。
还有一类是偏算法与数据挖掘的分析师。就是主要根据需要建立一些用户的打标签体系,比如根据用户的消费维度,浏览维度等等进行打标签。还有一块是根据用户相关标签进行推荐算法的应用。
相对来说数仓的技术门槛略低一些,人数相对较多,这块的发展路径就是技术序列往上爬,到数据库,算法经理/总监等。
数据产品部分属于数据应用层,根据业务方的需求,将一些常见看数取数的以产品的形式呈现。这块也主要分为3种类型:
一种是提供查数取数的平台化数据产品,对象是分析师的大数据的取数平台(主要是SQL语言来查询),对象是运营和业务人员的报表与数据集取数平台(通过几个维度字段筛选)。
还有一种是将常见看数的场景以可视化的平台展现(方便业绩走势和区域达成,搜索词热度排名与收益情况等),像淘宝就有提供的针对商家的生意参谋这种的数据产品,自媒体平台像微信公众号也有数据产品看自己文章的一些维度的数据图。
▲ 图片来源百度:淘宝给平台商家用的生意参谋▲ 图片来源百度:微信公众号提供给创作者的文章数据分析工具最后一块是现在比较火的数据中台,将各业务线数据打通,然后提供统一的数据标签接口,携程内部是由数据智能部中在打造这一块,属于在发展阶段。
这块的发展路径可以走数据产品经理路线,是既要有数据分析技能也要有产品设计管理的技能,比较新兴的一块领域。
数据的解读层就是目前人数需求最多的偏业务型的数据分析师,也是入门门槛最低的岗位。这种数据分析师由于相对技术的同学来说是靠近业务的,业务的领域更多的是跟对接需求的领域是相关的,领域取决于业务模块类型。
业务型分析师的主要工作内容我觉得理解成一句话就是数据需求项目管理,对接业务线的需求方,然后沟通相关需求,了解业务背景,最后通过数据处理与分析输出结果,最后与相关方确认结论后,实现项目交付。
日常3块工作主要是:
1- 临时性的取数;这是一个数据分析师刚到一家公司起步的时候做的最多的工作,首先是一些略复杂的取数需求,业务方自己能力无法实现,也有来自老板想要看一些数据,在这个同时可以熟悉一些数据口径,和对于数据背后业务意义有更多的理解。
2- 建立指标监控体系;接地气一点就是做报表。根据业务线KPI关心的内容建立指标监控报表,输出周期性的业务周报月报。
3- 数据分析项目,主要是业务线的异常原因分析,加上一些数据分析专项项目(比如一些场景的描述性统计洞察,一些基本的回归预测模型)。
从工作场景基本上可以看出,绝大部分场景是SQL取数/或者数据集取数,然后excel可以作图制作报告,很少的建模场景会用到Python。
没有那么技术,也没有那么业务,所以好入门,也很容易被替代,想成为数据分析专家,重点是懂业务的基础上加一些分析思路,这才是灵魂。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27