
自2018年开始,数据分析师的岗位就开始火热,很多培训机构开始疯狂的鼓吹数据分析人口如何稀缺以及数据分析如何高薪。在看招聘机会的时候,很多JD岗位描述里具备Python,数据挖掘算法等,所以很多人花了大量的时间学习Python和机器学习,其实工作中可能几乎都用不到。JD也多半是用人部门说要招一个数据分析师,然后HR直接从某处粘贴过来的,造成了应聘者的困惑,不知道具体是干嘛的。
接下来给大家聊下互联网数据分析师的类型以及未来潜在的发展路径。
要聊数据分析师,首先得从数据开始,了解互联网公司的数据流程,可以参照下方的这个流程图,通过流程我们可以识别数据分析师的种类。
通过这个图由下往上我们可以看到三大类型的数据分析师:数据开发层,数据智能应用层,业务解读层。02程序猿-数据开发类
数据开发是偏技术序列的数据分析师。这里的岗位主要分为两类:
一类是数据仓库型同学。工作内容涉及数据底层表,数据模型搭建,进行ETL转换建立维度表,针对业务线建立hive报表,还有spark与hadoop这种大数据平台的分析师。
还有一类是偏算法与数据挖掘的分析师。就是主要根据需要建立一些用户的打标签体系,比如根据用户的消费维度,浏览维度等等进行打标签。还有一块是根据用户相关标签进行推荐算法的应用。
相对来说数仓的技术门槛略低一些,人数相对较多,这块的发展路径就是技术序列往上爬,到数据库,算法经理/总监等。
数据产品部分属于数据应用层,根据业务方的需求,将一些常见看数取数的以产品的形式呈现。这块也主要分为3种类型:
一种是提供查数取数的平台化数据产品,对象是分析师的大数据的取数平台(主要是SQL语言来查询),对象是运营和业务人员的报表与数据集取数平台(通过几个维度字段筛选)。
还有一种是将常见看数的场景以可视化的平台展现(方便业绩走势和区域达成,搜索词热度排名与收益情况等),像淘宝就有提供的针对商家的生意参谋这种的数据产品,自媒体平台像微信公众号也有数据产品看自己文章的一些维度的数据图。
▲ 图片来源百度:淘宝给平台商家用的生意参谋▲ 图片来源百度:微信公众号提供给创作者的文章数据分析工具最后一块是现在比较火的数据中台,将各业务线数据打通,然后提供统一的数据标签接口,携程内部是由数据智能部中在打造这一块,属于在发展阶段。
这块的发展路径可以走数据产品经理路线,是既要有数据分析技能也要有产品设计管理的技能,比较新兴的一块领域。
数据的解读层就是目前人数需求最多的偏业务型的数据分析师,也是入门门槛最低的岗位。这种数据分析师由于相对技术的同学来说是靠近业务的,业务的领域更多的是跟对接需求的领域是相关的,领域取决于业务模块类型。
业务型分析师的主要工作内容我觉得理解成一句话就是数据需求项目管理,对接业务线的需求方,然后沟通相关需求,了解业务背景,最后通过数据处理与分析输出结果,最后与相关方确认结论后,实现项目交付。
日常3块工作主要是:
1- 临时性的取数;这是一个数据分析师刚到一家公司起步的时候做的最多的工作,首先是一些略复杂的取数需求,业务方自己能力无法实现,也有来自老板想要看一些数据,在这个同时可以熟悉一些数据口径,和对于数据背后业务意义有更多的理解。
2- 建立指标监控体系;接地气一点就是做报表。根据业务线KPI关心的内容建立指标监控报表,输出周期性的业务周报月报。
3- 数据分析项目,主要是业务线的异常原因分析,加上一些数据分析专项项目(比如一些场景的描述性统计洞察,一些基本的回归预测模型)。
从工作场景基本上可以看出,绝大部分场景是SQL取数/或者数据集取数,然后excel可以作图制作报告,很少的建模场景会用到Python。
没有那么技术,也没有那么业务,所以好入门,也很容易被替代,想成为数据分析专家,重点是懂业务的基础上加一些分析思路,这才是灵魂。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28