
作者:小K
来源:麦叔编程
今天可以来讲解下GIL是个什么了。
❞
GIL是Global Interpreter Lock的缩写,翻译过来就是全局解释器锁。
从字面上去理解,它就是锁在解释器头上的一把锁,它使Python代码运行变得有序。
假如有一段代码:
print(1)print(2)print(3)print(4)print(5)print(6)
运行之后,
123456
GIL通过确保在任何给定时间只运行一个线程来防止竞争条件
❝
GIL确保在任何给定时间只有一个线程在运行。
因此,不可能利用具有线程的多个处理器。
❞
❝
由于CPython的内存管理不是线程安全的,GIL可以防止竞争条件并确保线程安全。
❞
Python有多个解释器实现。分别用C、Java、C#和Python编写的CPython、Jython、IronPython和PyPy是最受欢迎的。
GIL 仅存在于CPython的原始Python实现中。
❝
那为什么不直接使用别的解释器为主要开发用呢?
因为CPython的库最为丰富。
如果别的解释器有支持你代码中的模块,那是可以直接移植过去使用的。
像Jython至今还没有推出Python3,只停留在Python2时代。
❞
我将用三段代码(单线程、多线程、多进程)解决一个问题(把50000000通过n-=1减至0)。
通过对比他们运行的所花费的时间,看哪段代码效率最高。
「单线程」
import timenum = 50000000def countdown(n): while n>0: n -= 1start = time.time()countdown(num)end = time.time()print('花费时间 -', end - start)
运行结果:
花费时间 - 3.7478301525115967
「多线程」
import timefrom threading import Threadnum = 50000000def countdown(n): while n>0: n -= 1t1 = Thread(target=countdown, args=[num//2])t2 = Thread(target=countdown, args=[num//2])start = time.time()t1.start()t2.start()t1.join()t2.join()end = time.time()print('花费时间 -', end - start)
运行结果:
花费时间 - 4.2221999168396
「多进程」
from multiprocessing import Poolimport timenum = 50000000def countdown(n): while n>0: n -= 1if __name__ == '__main__': pool = Pool(processes=2) start = time.time() r1 = pool.apply_async(countdown, [num//2]) r2 = pool.apply_async(countdown, [num//2]) pool.close() pool.join() end = time.time() print('花费时间 -', end - start)
运行结果:
花费时间 - 2.307600975036621
对于「计算密集型任务」,Python的多线程比单线程还慢,
这是由于线程的创建和销毁都要消耗资源(进程消耗资源更大)。
「对比单线程和多线程就能感受到GIL这个枷锁的束缚力了。」
用了多进程后,运行速度一下子从3.73缩短到2.30秒,证明多进程还是能突破GIL的封锁的。
❝
多进程底层是开了多个解释器去运行代码,一个进程一把GIL。
❞
Python三分钟--GIL专题到这一期就结束了~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02