
作者:俊欣
来源:关于数据分析与可视化
在数据可视化图表中,词云图的应用随处可见。它通常是对输入的一段文字进行词频提取,然后以根据词汇出现频率的大小集中显示高频词,简洁直观高效,今天小编就来分享一下在Python如何绘制出来精湛的词云图。
我们先来尝试绘制一张简单的词云图,用到的Python当中的wordcloud模块来绘制,
import jieba
from wordcloud import WordCloud import matplotlib.pyplot as plt
我们导入文本内容,并且去除掉一下换行符和空格,代码如下
text = open(r"明朝那些事儿.txt",encoding='utf8').read()
text = text.replace('n',"").replace("u3000","")
我们需要将其分成一个个的词,这个时候就需要用到jieba模块了,代码如下
text_cut = jieba.lcut(text) # 将分好的词用某个符号分割开连成字符串 text_cut = ' '.join(text_cut)
当然了,得到的结果当中或许存在着不少我们不需要看的、无关紧要的内容,这个时候就需要用到停用词了,我们可以自己来构建,也可以直接使用别人已经构建好的停词表,这里小编采用的是后者,代码如下
stop_words = open(r"常见中文停用词表.txt").read().split("n")
下面便是绘制词云图的核心代码了
word_cloud = WordCloud(font_path="simsun.ttc", # 设置词云字体 background_color="white", # 词云图的背景颜色 stopwords=stop_words) # 去掉的停词 word_cloud.generate(text_cut)
word_cloud.to_file("1.png")
output
这样一张极其简单的词云图算是做好了,当然我们可以给它添加一个背景图片,例如下面这张图片,
主要需要添加的代码如下所示
background = Image.open(r"5.png")
graph = np.array(background)
然后在WorCloud当中添加mask参数
# 使用WordCloud生成词云 word_cloud = WordCloud(font_path="simsun.ttc", # 设置词云字体 background_color="white", # 词云图的背景颜色 stopwords=stop_words, # 去掉的停词 mask=graph)
word_cloud.generate(text_cut)
word_cloud.to_file("1.png")
output
除此之外,还有另外一个模块stylecloud绘制出来的词云图也是非常酷炫的,其中我们主要是用到下面这个函数
gen_stylecloud(text=None, icon_name='fas fa-flag', colors=None, palette='cartocolors.qualitative.Bold_5', background_color="white", max_font_size=200, max_words=2000, stopwords=True, custom_stopwords=STOPWORDS, output_name='stylecloud.png', )
其中几个常用的参数有
我们来尝试绘制一个词云图,代码如下
stylecloud.gen_stylecloud(text=text_cut,
palette='tableau.BlueRed_6',
icon_name='fas fa-apple-alt',
font_path=r'田英章楷书3500字.ttf',
output_name='2.png',
stopwords=True,
custom_stopwords=stop_words)
output
其中的palette参数作为调色板,可以任意变换的,具体参考:https://jiffyclub.github.io/palettable/ 这个网站。
最后我们来看一下如何用Pyecharts模块来进行词云图的绘制,代码如下
from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
words = [
("皇帝", 10000),
("朱元璋", 6181),
("明朝", 4386),
("朝廷", 4055),
("明军", 2467),
("士兵", 2244),
("张居正", 1868),
("王守仁", 1281)
] c = ( WordCloud()
.add("", words, word_size_range=[20, 100])
.set_global_opts(title_opts=opts.TitleOpts(title="基本示例"))
) c.render("1.html")
output
出来的结果略显简单了,不过这里值得注意的是,pyecharts当中的WordCloud()方法传入的数据是指定的词语以及其出现的频次,这个和之前的操作有所不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27