
作者:俊欣
来源:关于数据分析与可视化
在数据可视化图表中,词云图的应用随处可见。它通常是对输入的一段文字进行词频提取,然后以根据词汇出现频率的大小集中显示高频词,简洁直观高效,今天小编就来分享一下在Python如何绘制出来精湛的词云图。
我们先来尝试绘制一张简单的词云图,用到的Python当中的wordcloud模块来绘制,
import jieba
from wordcloud import WordCloud import matplotlib.pyplot as plt
我们导入文本内容,并且去除掉一下换行符和空格,代码如下
text = open(r"明朝那些事儿.txt",encoding='utf8').read()
text = text.replace('n',"").replace("u3000","")
我们需要将其分成一个个的词,这个时候就需要用到jieba模块了,代码如下
text_cut = jieba.lcut(text) # 将分好的词用某个符号分割开连成字符串 text_cut = ' '.join(text_cut)
当然了,得到的结果当中或许存在着不少我们不需要看的、无关紧要的内容,这个时候就需要用到停用词了,我们可以自己来构建,也可以直接使用别人已经构建好的停词表,这里小编采用的是后者,代码如下
stop_words = open(r"常见中文停用词表.txt").read().split("n")
下面便是绘制词云图的核心代码了
word_cloud = WordCloud(font_path="simsun.ttc", # 设置词云字体 background_color="white", # 词云图的背景颜色 stopwords=stop_words) # 去掉的停词 word_cloud.generate(text_cut)
word_cloud.to_file("1.png")
output
这样一张极其简单的词云图算是做好了,当然我们可以给它添加一个背景图片,例如下面这张图片,
主要需要添加的代码如下所示
background = Image.open(r"5.png")
graph = np.array(background)
然后在WorCloud当中添加mask参数
# 使用WordCloud生成词云 word_cloud = WordCloud(font_path="simsun.ttc", # 设置词云字体 background_color="white", # 词云图的背景颜色 stopwords=stop_words, # 去掉的停词 mask=graph)
word_cloud.generate(text_cut)
word_cloud.to_file("1.png")
output
除此之外,还有另外一个模块stylecloud绘制出来的词云图也是非常酷炫的,其中我们主要是用到下面这个函数
gen_stylecloud(text=None, icon_name='fas fa-flag', colors=None, palette='cartocolors.qualitative.Bold_5', background_color="white", max_font_size=200, max_words=2000, stopwords=True, custom_stopwords=STOPWORDS, output_name='stylecloud.png', )
其中几个常用的参数有
我们来尝试绘制一个词云图,代码如下
stylecloud.gen_stylecloud(text=text_cut,
palette='tableau.BlueRed_6',
icon_name='fas fa-apple-alt',
font_path=r'田英章楷书3500字.ttf',
output_name='2.png',
stopwords=True,
custom_stopwords=stop_words)
output
其中的palette参数作为调色板,可以任意变换的,具体参考:https://jiffyclub.github.io/palettable/ 这个网站。
最后我们来看一下如何用Pyecharts模块来进行词云图的绘制,代码如下
from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
words = [
("皇帝", 10000),
("朱元璋", 6181),
("明朝", 4386),
("朝廷", 4055),
("明军", 2467),
("士兵", 2244),
("张居正", 1868),
("王守仁", 1281)
] c = ( WordCloud()
.add("", words, word_size_range=[20, 100])
.set_global_opts(title_opts=opts.TitleOpts(title="基本示例"))
) c.render("1.html")
output
出来的结果略显简单了,不过这里值得注意的是,pyecharts当中的WordCloud()方法传入的数据是指定的词语以及其出现的频次,这个和之前的操作有所不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14