京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天小编来介绍一下如何用Python来操作Excel文件,当中需要用到的模块叫做openpyxl,其中我们会涉及到一些基本常规的操作,例如有
小编默认大家已经都安装好了openpyxl模块了,要是还没有安装的话,可以通过pip命令行,代码如下
pip install openpyxl
我们首先来导入Excel数据集,代码如下
# 导入模块from openpyxl import Workbook, load_workbook# 导入Excel数据集wb = load_workbook(r"grades.xlsx")# 得到正在运行的工作表sheet = wb.active# 工作表的名称叫做print(sheet)
output
我们通过传入单元格的位置来打印其中的数值,代码如下
print(sheet["A1"].value)print(sheet["A2"].value)print(sheet["B3"].value)
output
NameTestMale
我们还可以尝试来改变某个单元格的数值,代码如下
sheet["A1"] = "Dylan"# 保存wb.save(r"grades.xlsx")
在保存过之后,我们来看一下结果如何,如下图所示
我们尝试在现有的Excel当中添加一个工作表,代码如下
# 添加一个新的工作表wb.create_sheet("Class B")# 返回以列表形式带有工作表名称print(wb.sheetnames)
output
['Class A', 'Class B']
我们尝试新建一个工作簿,并且插入若干条数据,代码如下
# 创建一个新的工作簿new_wb = Workbook()ws = new_wb.active# 重命名工作表的名称ws.title = "Test1"# 插入数据到新建的工作表中ws.append(["This","is","a","test"])new_wb.save("test.xlsx")
我们来看一下最后出来的结果,如下图所示
我们尝试来多插入几条数据,代码如下
# 插入更多的数据ws.append(["This","Is","Another","Test"])ws.append(["And","Yet","Another","Test"])ws.append(["End"])# 保存new_wb.save("test.xlsx")
如果是想插入某一行的话,调用的则是insert_rows()方法,具体代码如下
# 前面的步骤一样,导入工作簿和数据ws.insert_rows(1)wb.save("test.xlsx")
出来的结果如下图所示
同理,如果是想要去删除某一行的数据的话,调用的则是delete_rows()方法,具体代码如下
ws.delete_rows(1)# 保存wb.save("test.xlsx")
出来的结果如下图所示
我们来看一下该如何插入列和删除列,插入列用到的方式是insert_cols(),代码如下
# 新插入一列ws.insert_cols(2)
结果如下
而删除列的方法是delete_cols(),
ws.delete_cols(1,2)
我们还可以进行一系列的数据统计分析,首先我们先把需要用到的数据放入至Excel当中去,
sales_data = { "苹果": {"北京": 5000, "上海": 7000, "深圳": 6000, "香港": 10000}, "华为": {"北京": 8000, "上海": 4000, "深圳": 3000, "香港": 9000}, "小米": {"北京": 6000, "上海": 9000, "深圳": 5000, "香港": 6000}, "vivo": {"北京": 3000, "上海": 5000, "深圳": 4000, "香港": 7000} }
小编随意生成了一点数据,并且将其放置到Excel当中去,代码如下
# 创建一个新的工作簿sales_wb = Workbook()ws = sales_wb.active# 重命名工作表的名称ws.title = "Sales"# 创建列名column_names = ["Product Name"] + list(sales_data["苹果"].keys())ws.append(column_names)# 将一系列的数值都放置到工作表当中去for product in sales_data: sales = list(sales_data[product].values()) ws.append([product] + sales)sales_wb.save("sales_data.xlsx")
我们来看一下出来的结果,如下图所示
我们来指定某一列,并且求出其平均值,代码如下
ws['B6'] = '=AVERAGE(B2:B5)'sales_wb.save("sales_data.xlsx")
我们来看一下出来的结果,如下图所示
我们为每一座城市的销售额都来做一个求和的计算,我们写一个for循环来遍历每一列,将每一列当中的数据做一个求和,代码如下
# 再添加新的一行的名称ws['A' + str(ws.max_row + 1)] = "Total Sales"# 遍历再求和for col in range(2, len(sales_data["苹果"]) + 2): char = get_column_letter(col) ws[char + '6'] = f"=SUM({char + '2'}:{char + '5'})"
我们来看一下出来的结果,如下图所示
我们也可以来更改字体的颜色,使得更加美观一些,代码如下
for col in range(1,ws.max_column+1): ws[get_column_letter(col) + '1'].font = Font('Arial', bold=True, size=13, color='00000080') sales_wb.save("sales_data.xlsx")
我们来看一下美化过之后的结果,如下图所示
最后的最后,我们来绘制一张柱状图,来看一下不同的产品在每一个城市的销售数据如何,横坐标对应的产品类目,而纵坐标对应的则是销售数据,另外我们根据不同的城市会用不用的颜色来标注出来,代码如下
from openpyxl.chart import BarChart, Reference# 新建一个柱状图实例barchart = BarChart()# 确定数据的范围data = Reference(ws, min_col=ws.min_column+1, max_col=ws.max_column, min_row=ws.min_row, max_row=ws.max_row-1)categories = Reference(ws, min_col=ws.min_column, max_col=ws.min_column, min_row=ws.min_row+1, max_row=ws.max_row-1)# 添加数据以及类目barchart.add_data(data, titles_from_data=True)barchart.set_categories(categories)# 绘制的数据放在哪个位置ws.add_chart(barchart, "G1")# 添加标题barchart.title = '每座城市的产品销售数据'# 图表的类型barchart.style = 2sales_wb.save("sales_data.xlsx")
我们来看一下最后出来的结果,如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16