京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:CDA明星讲师 曹鑫
编辑:Mika
大家好,今天我们来讲讲函数返回结果。但是我们拿来的这个函数还是稍显复杂的。
返回斐波那契数列的 n 项,我们定义 def fibo (n) ,fibo 是我自己取的一个名字,n 代表我要返回多少项,然后冒号是函数的开头结尾,然后下面要缩进。
开始写 a 等于 0,b等于1,i=0,result 等于一个空的列表,这都是我们提前的预知变量。
然后while i 小于 n,就是说如果我想要5个,我这个 i 如果小于5的话,我就执行下面的操作。
i是什么?i 开始是 0,也就是从第0的位置,一个值开始。
那 0 肯定是小于 5 的, 接着 result.append (a) 。a 是什么?a 是 0,它第一个位置就是 0 。
接下来这个特别重要,a,b=b, a+b, 也就是同时赋值。a 被赋值为b,b被赋值为 a+b 。
这里一定要记住了, a 这个时候是 0,但是 b 是 1,所以这个赋值的时候,a 就变成了 1 了,接下来 b 被赋值成 a+b。
注意这里的 a 依然是 0,1 是 1,因为负值是同时产生的,你不能把这里赋值完值的 a 再拿到这里来用。
这后面 b 就是 1,a 就是 0,b 就是 1,这时候 a 和 b 就分别又被赋值成了1和0+1 也是1,然后 i=i+1,去为了下一次循环做准备。
接下来第二个, i=i+1 之后,i 依然是小于 5 的,继续把 result.append 刚刚 a它已经被赋值为 1 了,1 进去之后再继续求 a,b 分别是 b 和 a+b 的赋值,也就是这么一个循环,不断的去进行,直到 i 不小于你给出的 n ,就得到了一个结果。
就把这个结果给 return出来,return 就是返回结果的方式,我们运行一下,然后把 fibo改成 10,我们就得到了 0、1、1这样一个10位的斐波那契数列。
为什么这里可以自动打印出来?
首先 return 了,就是把这个值返回过来了,同时在 jupyter notebook 里面默认最后一行是打印的,所以这里有个 print操作,就可以把这个结果显示出来。
这里最重要的要理解的就是这个 a,b它在做同时赋值的时候一定是用原始的值来求的。
如果你把它分开,分成 a=b ,然后再用b=a+b 的话,这个时候它就有一个先后运算的关系了,而在这里它是同时运行的,这里需要大家好好理解。
接下来我们来讲讲遍历的操作。
我这里有一个 n ,那遍历三次的话就是 for i in range (n) ,然后 print (i)。我们就会得到0、1、2 那个结果。为什么呢?
因为 range (n) 它其实意思就是 range (0) 到你的 n,这里是 3,就是 0 到 3 这样一个范围,这是我们最常用的遍历的方式。
当大家不知道这个 range 是什么的时候,可以用 range (n) 把它打印出来看一下,它会返回什么结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29