京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编辑:Mika
作者:姜寿明 CDA Level Ⅰ 持证人
大家好,我叫姜寿明,是一名CDA Level Ⅰ 持证人。
我目前在一家金融科技公司从事咨询和解决方案相关工作。
我本科读的信息与计算科学专业,当中差不多是一半数学和一半计算机课程。我也算是经过了一些统计学、数据库以及软件编程相关较为初级和系统化的学习与训练。之后我在研究生读的是管理科学与工程专业。
毕业后,我的第一份工作是在一家上市公司集团战略部门从事战略规划工作。后面我就沿着咨询规划和解决方案这条职业发展路线走了下来。
工作几年后,我时常思考如何能够不断提升自己在咨询领域的专业能力,从而提高在职场的核心竞争力。
为此,我研究了一些招聘平台上中高级职位的招聘要求,我发现除了具备系统化的咨询规划理论和经验外,很多岗位还要求有良好外语能力以及数据分析能力,例如掌握Python、SQL、SPSS、R、Tableau、大数据分析等软件工具和技能。
恰巧我一个朋友在学习和备考CDA资格证书,我跟她初步了解后就也开始以这个为目标进行系统化的备考学习了。
我学习方式主要是围绕考试大纲,接着我在网络途径搜集了一些质量比较高的线上课程,准备跟着课程进行查漏补缺的学习。
与此同时,我把本科时期学的一些统计学类课本也拿出来翻了一下。
因为除了日常的工作,我主要利用空余时间学习,所以备考的战线拉得比较长,我一共准备了一年半时间。
我一般要求自己每周至少学习3到4天,每次半个小时以上。中间也会因为偶尔工作比较忙,中断一两个周停止学习。但我并不懊悔,重要的是持续坚持下来。
在备课过程中,我虽然有一些统计学的专业基础,但是确实离学习时间也比较久远了,其中一些较为复杂的部分,比如假设检验、回归拟合等的理论和实操方法还是花了一些时间去反复复习和理解,所幸最终考试的涉及这部分的知识考察并不难。
一、考试大纲和模拟题一定要好好看、好好做,做好知识点查漏补缺;
二、做笔记是很有必要的,尤其是系统化学习、战线拉的比较长的时候,需要对抗遗忘,以及最后集中备考那几天需要有弹药。
在未来规划方面,我还是会继续在自己的专业领域深耕积累,提升自己的综合能力。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20