京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:闲欢
来源:Python 技术
大家好,我是闲欢,一个很卷的程序员!
今天给大家分享一个炒鸡炒鸡简单又好用的神器——pampy。
我敢以我的荣誉保证,用了它之后,你写代码的效率可以蹭蹭蹭地提升!
首先普及一下模式匹配。
模式匹配即给定某种模式,用这种模式去检查序列或字符串是否符合这种模式,这种技术在自然语言处理中经常使用。
Pampy 是 Python 的一个模式匹配类库,一个只有150行的类库,该库优雅、高效值得广大Python的码农加入自己基本开发栈中。
无独有偶,该程序还有一个同名的 Pampy.js 的 JavaScript 版本库。
你如果有兴趣,可以阅读源码,将其照搬到更多的开发语言中。
安装这个库的方式也是老生常谈了:
pip install pampy
我们可以用 _ 来匹配单个字符:
from pampy import _,match
a=['a',1,'b',2,'c',3,'d',4]
patter = ['a',1,'b',_,'c',3,'d',4]
action=lambda x: f'b is: {x}' print(match(a,patter,action))
运行结果是:
b is: 2
从上面例子可以看出,实际上我们只是用 _ 充当一个占位符,当匹配的时候,找到这个占位符对应的元素即可。
我们可以匹配多层级的字典中的任意一个层级的 key 或者 value:
from pampy import _, match
person = { 'address': {'province': '湖北', 'city': '武汉', 'district': '东湖高新'}, 'name': '闲欢' }
patter = {_: {_: '武汉'}}
action = lambda k1, k2: ({'k1': k1, 'k2': k2})
print(match(person, patter, action))
运行结果是:
{'k1': 'address', 'k2': 'city'}
跟前一个例子类似,这里使用 _ 这个占位符占位,然后在 action 里面定位占位符,即可输出结果。
上面的例子,我们都是使用占位符来占位,但是占位符只能匹配一个字符,下面的例子,我们将用 HEAD 和 TAIL 这两个关键词来匹配开头和结尾,他们可以批评任意多个字符:
from pampy import _,match,HEAD,TAIL
a=['a',1,'b',2,'c',3,'d',4]
patter = [HEAD,_,'b',2,'c',3,TAIL]
action=lambda h,m,t: ({'head':h,'middle':m,'tail':t})
print(match(a,patter,action))
运行上面例子,结果是:
{'head': 'a', 'middle': 1, 'tail': ['d', 4]}
我们可以从结果看到,HEAD 匹配了一个字符,TAIL 匹配了两个字符,输出的时候,如果是多个字符,结果会以数组的方式给出。
Pampy 的例子都很简单,大家一阅便知。通过看着几个例子,是不是有种感觉:哇,还有这等神器!
当然,Pampy 的模式匹配不止这么几种方式,还有更多方式有待大家去探索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27