
作者:闲欢
来源:Python 技术
大家好,我是闲欢,一个很卷的程序员!
今天给大家分享一个炒鸡炒鸡简单又好用的神器——pampy。
我敢以我的荣誉保证,用了它之后,你写代码的效率可以蹭蹭蹭地提升!
首先普及一下模式匹配。
模式匹配即给定某种模式,用这种模式去检查序列或字符串是否符合这种模式,这种技术在自然语言处理中经常使用。
Pampy 是 Python 的一个模式匹配类库,一个只有150行的类库,该库优雅、高效值得广大Python的码农加入自己基本开发栈中。
无独有偶,该程序还有一个同名的 Pampy.js 的 JavaScript 版本库。
你如果有兴趣,可以阅读源码,将其照搬到更多的开发语言中。
安装这个库的方式也是老生常谈了:
pip install pampy
我们可以用 _ 来匹配单个字符:
from pampy import _,match
a=['a',1,'b',2,'c',3,'d',4]
patter = ['a',1,'b',_,'c',3,'d',4]
action=lambda x: f'b is: {x}' print(match(a,patter,action))
运行结果是:
b is: 2
从上面例子可以看出,实际上我们只是用 _ 充当一个占位符,当匹配的时候,找到这个占位符对应的元素即可。
我们可以匹配多层级的字典中的任意一个层级的 key 或者 value:
from pampy import _, match
person = { 'address': {'province': '湖北', 'city': '武汉', 'district': '东湖高新'}, 'name': '闲欢' }
patter = {_: {_: '武汉'}}
action = lambda k1, k2: ({'k1': k1, 'k2': k2})
print(match(person, patter, action))
运行结果是:
{'k1': 'address', 'k2': 'city'}
跟前一个例子类似,这里使用 _ 这个占位符占位,然后在 action 里面定位占位符,即可输出结果。
上面的例子,我们都是使用占位符来占位,但是占位符只能匹配一个字符,下面的例子,我们将用 HEAD 和 TAIL 这两个关键词来匹配开头和结尾,他们可以批评任意多个字符:
from pampy import _,match,HEAD,TAIL
a=['a',1,'b',2,'c',3,'d',4]
patter = [HEAD,_,'b',2,'c',3,TAIL]
action=lambda h,m,t: ({'head':h,'middle':m,'tail':t})
print(match(a,patter,action))
运行上面例子,结果是:
{'head': 'a', 'middle': 1, 'tail': ['d', 4]}
我们可以从结果看到,HEAD 匹配了一个字符,TAIL 匹配了两个字符,输出的时候,如果是多个字符,结果会以数组的方式给出。
Pampy 的例子都很简单,大家一阅便知。通过看着几个例子,是不是有种感觉:哇,还有这等神器!
当然,Pampy 的模式匹配不止这么几种方式,还有更多方式有待大家去探索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14