
作者:俊欣
来源:关于数据分析与可视化
相信大家在数据抓取的时候,会碰到很多加密的参数,例如像是“token”、“sign”等等,今天小编就带着大家来盘点一下数据抓取过程中这些主流的加密算法,它们有什么特征、加密的方式有哪些等等,知道了这些之后对于我们逆向破解这些加密的参数会起到不少的帮助!
首先我们需要明白的是,什么是加密和解密?顾名思义
加密和解密算法的操作通常都是在一组密钥的控制下进行的,分别成为是加密密钥(Encryption Key)和解密密钥(Decryption Key),如下图所示
而加密算法当中又分为是对称加密和非对称加密以及散列算法,其中
Base64严格意义上来说不算做事加密的算法,只是一种编码的方式,它是一种用64个字符,分别是A-Z、a-z、0-9、+、/这64个字符,实现对数据的编码,可用于在HTTP环境下传递较长的标识信息。采用Base64编码具有不可读性,需要解码后才能阅读。我们使用Python来对任意网址进行Base64的编码操作,代码如下
import base64 # 想将字符串转编码成base64,要先将字符串转换成二进制数据 url = "www.baidu.com" bytes_url = url.encode("utf-8")
str_url = base64.b64encode(bytes_url) # 被编码的参数必须是二进制数据 print(str_url)
output
b'd3d3LmJhaWR1LmNvbQ=='
那么同样地,我们也可以对其进行解码的操作,代码如下
url = "d3d3LmJhaWR1LmNvbQ==" str_url = base64.b64decode(url).decode("utf-8")
print(str_url)
output
www.baidu.com
MD5是一种被广泛使用的线性散列算法,且加密之后产生的是一个固定长度(32位或者是16位)的数据,由字母和数字组成,大小写统一。其最后加密生成的数据是不可逆的,也就是说不能够轻易地通过加密后的数据还原到原始的字符串,除非是通过暴力破解的方式。
我们在Python当中来实现一下MD5加密
import hashlib
str = 'this is a md5 demo.' hl = hashlib.md5()
hl.update(str.encode(encoding='utf-8')) print('MD5加密前为 :' + str) print('MD5加密后为 :' + hl.hexdigest())
output
MD5加密前为 :this is a md5 demo.
MD5加密后为 :b2caf2a298a9254b38a2e33b75cfbe75
就像上文提到的,针对MD5加密可以通过暴力破解的方式来降低其安全性,因此在实操过程当中,我们会添加盐值(Salt)或者是双重MD5加密等方式来增加其可靠性,代码如下
# post传入的参数 params = "123456" # 加密后需拼接的盐值(Salt) salt = "asdfkjalksdncxvm" def md5_encrypt(): m = md5()
m.update(params.encode('utf8'))
sign1 = m.hexdigest() return sign1 def md5_encrypt_with_salt(): m = md5()
m.update((md5_encrypt() + salt).encode('utf8'))
sign2 = m.hexdigest() return sign2
首先我们来讲DES加密,全称是Data Encryption Standard,即数据加密标准,在对称性加密当中比较常见的一种,也就是加密和解密过程当中使用的密钥是相同的,因此想要破解的话,通过暴力枚举的方式,只要计算的能力足够强还是可以被破解的。
AES的全称是Advanced Encryption Standard,是DES算法的替代者,也是当今最流行的对称加密算法之一。想要弄清楚AES算法,首先就得弄明白三个基本的概念:密钥、填充和模式。
密钥我们之前已经说了很多了,大家可以将其想象成是一把钥匙,既可以用其来进行上锁,可以用其来进行解锁。AES支持三种长度的密钥:128位、192位以及256位。
而至于填充这一概念,AES的分组加密的特性我们需要了解,具体如下图所示
简单来说,AES算法在对明文加密的时候,并不是把整个明文一股脑儿地加密成一整段密文,而是把明文拆分成一个个独立的明文块,每一个明文块的长度为128比特。
这些明文块经过AES加密器的复杂处理之后,生成一个个独立的密文块,将这些密文块拼接到一起就是最终的AES加密的结果了。
那么这里就有一个问题了,要是有一段明文的长度是196比特,如果按照每128比特一个明文块来拆分的话,第二个明文块只有64比特了,不足128比特该怎么办呢?这个时候就轮到填充来发挥作用了,默认的填充方式是PKCS5Padding以及ISO10126Padding。
不过在AES加密的时候使用了某一种填充方式,解密的时候也必须采用同样的填充方式。
AES的工作模式,体现在了把明文块加密成密文块的处理过程中,主要有五种不同的工作模式,分别是CBC、ECB、CTR、CFB以及OFB模式,同样地,如果在AES加密过程当中使用了某一种工作模式,解密的时候也必须采用同样地工作模式。最后我们用Python来实现一下AES加密
import base64 from Crypto.Cipher import AES def AES_encrypt(text, key): pad = 16 - len(text) % 16 text = text + pad * chr(pad) text = text.encode("utf-8") encryptor = AES.new(key.encode('utf-8'), AES.MODE_ECB) encrypt_text = encryptor.encrypt(text) encrypt_text = base64.b64encode(encrypt_text) return encrypt_text.decode('utf-8')
或者大家也可以看一下网上其他的AES加密算法的实现过程,基本上也都是大同小异的,由于篇幅有限,今天暂时就先介绍到这里,后面要是大家感兴趣的话,会去分享一下其他加密算法的实现原理与特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28