京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编辑:Mika
作者:杨迅 CDA Level Ⅰ 持证人
大家好,我叫杨迅,是一名CDA Level Ⅰ 持证人,今天很高兴跟大家分享一下我的CDA认证备考经验。
我毕业后就职国内某头部保险集团任 IT 产品经理,因负责数仓和指标体系的搭建,故需对数据统计分析相关内容有较深入的掌握。在了解到 CDA 后,基于“既然学了不如顺便拿个证”的心态报了名。
总的来说 Level Ⅰ 的内容是比较基础的,我认为所有产品经理至少需要掌握 Level Ⅰ 所要求的数据分析能力(不见得必须考证),对于工作中用户调研、行为数据分析、结构性思维等方面都会有所帮助。若从事专业的数据分析工作,还需要进一步掌握更高级别的数据分析技能。
我主要是工作中正好需要用到相关的知识,所以平时工作本身也是对相关内容的学习和实践。
另外下班后我会找时间把推荐的几本书都好好的看看,重要的部分梳理一下笔记。
只要根据自己的时间,把推荐的书都看完,把 CDA 提供的一系列配套课程学完,应对考试完全是没问题的,其实重点还是要看有没有真的学到东西。
说实话,Level Ⅰ 的难度并不是很大,如果要挑个重点的话我觉得是『业务分析方法与模型』部分。这部分占比最重,同时知识点也最分散,不像统计学和数据库一样都是十分成熟的知识体系,所以这部分在学校也不可能体系化的学习过。
在准备这部分时需要根据考纲大范围的搜寻相关资料和知识点,然后进行整理,尽可能自己搭建核心知识体系。
在这里,仅就考纲内容推荐大家几本相关度较高的书吧。
第一本是《统计学(第七版)》贾俊平、何晓群、金勇进编著,里面概率分布、统计抽样、参数估计、假设检验、列联分析、方差分析、线性回归等都是考纲中统计分析部分重点考核的内容。这本书是『十二五』普通高等教育本科教材,如果是理工科的上学时应该都学过,忘记的找出来复习一下就行了。
第二本是《数据库系统概论(第五版)》王珊、萨师煊编著,这本也是大学教材,比较全面地介绍了数据库应用相关的基础知识,涵盖了 Level Ⅰ 考试中与数据库相关的全部知识。
第三本是《数据仓库工具箱(第三版)——维度建模权威指南》Ralph Kimball 和 Margy Ross 编著,若仅为考试,该书可重点看前三章,详细介绍了数据仓库的发展历程和维度建模技术的使用方法,对应考纲中多维度数据分析部分的内容。第三章以后是维度建模技术在各个行业的具体实践应用,对从事数仓等相关领域工作的人会有很大帮助。
最后推荐几本 CDA 考纲中也推荐过的书,《数据决策-企业数据的管理、分析与应用》《活用数据-驱动业务的数据分析实战》《数据化管理-洞悉零售及电子商务运营》。这三本书对应考纲中业务分析方法、分析报告、Excel 使用技巧等内容,其中《活用数据》这本也涉及到部分统计学内容,不过其中存在几处公式错误,大家注意甄别,有疑问要以《统计学(第七版)》内容为准。《活用数据》中还用到了 SPSS 工具,感兴趣的可以看《SPSS 统计分析基础/高级教程(第三版)》,也是大学教材。
最后想跟大家说的是, 获得证书只是对现阶段自己水平的一个肯定,将来还是要坚持不断学习的。
多读书多学习,读书就像吃饭,虽然难以马上看到收益,但是想要长远的走下去,就离不开一日三餐。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17