京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		作者:俊欣
来源:关于数据分析与可视化
相信大家一定会seaborn或者matplotlib这几个模块感到并不陌生,通常大家会用这几个模块来进行可视化图表的制作,为了让我们绘制的图表更具交互性,今天小编来给大家介绍个组件。
首先我们通过pip命令来下载该模块
pip install ipywidgets
该模块中的interact函数可以和我们自定义的函数相结合,随着我们输入的不断变化,输出也会产生相应的不同结果,我们来看一个简单的案例
from ipywidgets import interact def f(x): print(f"The square value is: {x**2}")
    
interact(f, x=10)
output
当我们拖动当中的圆点的时候,输出的结果也随之变化。当然我们也可以将其当做是装饰器来使用,代码如下
@interact(x=10) def f(x): print(f"The square value is: {x**2}")
output
上面的自定义函数中,当然我们可以自行设定横轴当中的最大值与最小值,以及每拖动一次x值的变化(和Python当中的range函数类似),
interact(f, x=widgets.IntSlider(min=-10, max=30, step=1, value=10))
output
而当输入框中的参数不止一个参数的时候,可以有不止一个的滑动条,代码如下
import ipywidgets as widgets
one = widgets.IntSlider(min = 0, max = 10)
two = widgets.IntSlider(min = 0, max = 100)
three = widgets.IntSlider(min = 0, max = 1000)
ui = widgets.HBox([one, two, three])
def func(x, y, z): print(f"The first value is: {x + 2}") print(f"The second value is: {y * 2}") print(f"The third value is: {z ** 2}")
    
out = widgets.interactive_output(func, {"x": one, "y": two, "z": three})
display(ui, out)
output
当参数类型是字符串时,则是需要通过输入框的形式来进行交互,代码如下
def f_2(x): print(f"The value is: {x}")
interact(f_2, x="Hello World")
output
而当我们输入的X参数是一个列表里面有着若干个字符串的时候,则会在输入框中出现个下拉框,如下所示
interact(f_2, x=["Hello World", "你好"])
output
然后我们来看看该模块和seaborn之间的结合,我们先用Pandas模块来读取数据集,代码如下
import pandas as pd
df = pd.read_csv("data.csv")
df.head()
output
我们简单地来画一张直方图,代码如下
import seaborn as sns import matplotlib.pyplot as plt
%matplotlib inline g = sns.countplot(data = df, x="Gender", hue="Attrition")
output
我们可以将绘制图表的这一行代码封装成一个函数,将代码中的“x”甚至是“hue”作为是输入的参数,代码如下
## 筛选出离散型变量的特征 categorical_columns = [column for column in df.columns if df[column].dtype == "object"] ## 做成下拉框的形式来进行交互 dd = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Select a column") @interact(column=dd) def draw_countplot(column): g = sns.countplot(data = df, x=column, hue="Attrition")
output
我们可以在下拉框中选择不同的离散型变量的特征从而绘制出不同的图表,当然一个下拉框可能有人会觉得有点少,我们可以再来扩展一下
## 两个下拉框 dd1 = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Column")
dd2 = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Hue")
ui = widgets.HBox([dd1, dd2]) ## 绘制图表的函数 def draw_countplot(column, hue):
    g = sns.countplot(data = df, x=column, hue=hue) ## X轴方向的标记会旋转60度 if len(df[column].unique()) > 3:
        g.tick_params(axis="x", rotation=60) out = widgets.interactive_output(draw_countplot, {'column':dd1, "hue": dd2}) ## 最终将图表呈现出来 display(ui, out)
output
当然有可能会觉得都是输入框的话会有点无聊,那我们在输入框的同时加入一个滑动条,对应的是输入的参数是整型或者是浮点数时
## 两个输入框还有一个滑动条 dd1 = widgets.Dropdown(options=numeric_columns, description="Column1")
dd2 = widgets.Dropdown(options=numeric_columns, description="Column2")
slider = widgets.IntSlider(min=df['Age'].min(), max=df["Age"].max(), description="Max Age")
ui = widgets.HBox([dd1, dd2, slider]) ## 绘制图表的函数 def draw_relplot(column1, column2, age):
    p = sns.relplot(data=df[df['Age']<=age], x=column1, y=column2) out = widgets.interactive_output(draw_countplot, {"column1": dd1, "column2": dd2, "age": slider}) ## 将最终的图表给呈现出来 display(ui, out)
output
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28