
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天在Python黄金交流群有个叫【安啦!】的粉丝问了一个Python正则表达式提取数字的问题,这里拿出来给大家分享下,一起学习下。
代码截图如下:
可能有的粉丝不明白,这里再补充下。下图是她的原始数据列,关于【工作经验】列的统计。
现在她的需求是将工作年限提取出来,用于后面的多元回归分析。
这里提供四个解决方法,感谢【Python进阶者】和【月神】提供的方法。前面两种是【Python进阶者】的,后面两个是【月神】提供的,一起来学习下吧!
方法一
代码如下:
def work_year(y): y = y.strip() if y == '无需经验': return 0 elif y == '在校生/应届生': return 0 elif '-' in y and '年经验' in y:
low_experience = re.findall(re.compile('(d*.?d+)'), y)[0]
high_experience = re.findall(re.compile('(d?.?d+)'), y)[1]
s = round((float(low_experience) + float(high_experience)) / 2, 0) return s elif '年经验' in y or '年以上经验' in y:
year = re.findall(re.compile('^(d+)'), y)[0] return year else: return y
df['new']=df['工作经验'].apply(work_year)
df.head()
运行结果如下图所示:
方法二
代码如下:
def work_year(y): if y == '无需经验': return 0 elif y == '在校生/应届生': return 0 elif '-' in y:
low_experience = re.findall(re.compile('(d*.?d+)'), y)[0]
high_experience = re.findall(re.compile('(d?.?d+)'), y)[1]
s = round((float(low_experience) + float(high_experience)) / 2, 0) return s elif y[0].isnumeric():
year = re.findall(re.compile('^(d+)'), y)[0] return year else: return y
df['col1'] = df['工作经验'].str.strip().apply(work_year)
df
运行结果如下图所示:
方法三
代码如下:
def work_year(y): search_year = re.search(r'(d+)?-?(d+)', y) def average(args): x = tuple(args)
length = len(x) return round(sum(x) / length, 0) if search_year: return average([int(i) for i in search_year.groups() if i]) else: return 0 df['new1'] = df['工作经验'].apply(work_year)
这里只需要写一个正则表达式就行了,如果取到值就对取到的值求平均,没有就返回0。
运行结果如下图所示:
方法四
代码如下:
df['new2'] = df['工作经验'].str.extract(r'(d+)?-?(d+)').astype(float).mean(axis=1).fillna(0).round(0)
这个是用str.extract提取正则,正则表达式和上面一样,用了很多的链式方法,运行结果如下图所示:
所以代码简单了,但是可能不太好懂。
大家好,我是Python进阶者。这篇文章基于粉丝提问,盘点了csv文件中工作经验列工作年限数字正则提取的三个方法,代码非常实用,可以举一反三,文中针对该问题给出了具体的解析和代码演示,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27