
作者:俊欣
来源:关于数据分析与可视化
今天我们来聊一下如何用协程来进行数据的抓取,协程又称为是微线程,也被称为是用户级线程,在单线程的情况下完成多任务,多个任务按照一定顺序交替执行。
那么aiohttp模块在Python中作为异步的HTTP客户端/服务端框架,是基于asyncio的异步模块,可以用于实现异步爬虫,更快于requests的同步爬虫。下面我们就通过一个具体的案例来看一下该模块到底是如何实现异步爬虫的。
我们先来看一下发起请求的部分,代码如下
async def fetch(url, session): try: async with session.get(url, headers=headers, verify_ssl=False) as resp: if resp.status in [200, 201]:
logger.info("请求成功")
data = await resp.text() return data except Exception as e:
print(e)
logger.warning(e)
要是返回的状态码是200或者是201,则获取响应内容,下一步我们便是对响应内容的解析
这里用到的是PyQuery模块来对响应的内容进行解析,代码如下
def extract_elements(source): try:
dom = etree.HTML(source)
id = dom.xpath('......')[0]
title = dom.xpath('......')[0]
price = dom.xpath('.......')[0]
information = dict(re.compile('.......').findall(source))
information.update(title=title, price=price, url=id)
print(information)
asyncio.ensure_future(save_to_database(information, pool=pool)) except Exception as e:
print('解析详情页出错!')
logger.warning('解析详情页出错!') pass
最后则是将解析出来的内容存入至数据库当中
这里用到的是aiomysql模块,使用异步IO的方式保存数据到Mysql当中,要是不存在对应的数据表,我们则创建对应的表格,代码如下
async def save_to_database(information, pool): COLstr = '' # 列的字段 ROWstr = '' # 行字段 ColumnStyle = ' VARCHAR(255)' if len(information.keys()) == 14: for key in information.keys():
COLstr = COLstr + ' ' + key + ColumnStyle + ',' ROWstr = (ROWstr + '"%s"' + ',') % (information[key]) async with pool.acquire() as conn: async with conn.cursor() as cur: try: await cur.execute("SELECT * FROM %s" % (TABLE_NAME)) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: await cur.execute("CREATE TABLE %s (%s)" % (TABLE_NAME, COLstr[:-1])) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: pass
最后我们来看一下项目启动的代码,如下
async def consumer():
async with aiohttp.ClientSession() as session: while not stop: if len(urls) != 0:
_url = urls.pop() source = await fetch(_url, session)
extract_links(source) if len(links_detail) == 0:
print('目前没有待爬取的链接')
await asyncio.sleep(np.random.randint(5, 10))
continue link = links_detail.pop() if link not in crawled_links_detail:
asyncio.ensure_future(handle_elements(link, session))
我们通过调用ensure_future方法来安排协程的进行
async def handle_elements(link, session): print('开始获取: {}'.format(link))
source = await fetch(link, session) # 添加到已爬取的集合中 crawled_links_detail.add(link)
extract_elements(source)
下面我们针对抓取到的数据进行进一步的分析与可视化,数据源是关于上海的二手房的相关信息,我们先来看一下房屋户型的分布,代码如下
house_size_dict = {}
for house_size, num in zip(df["房屋户型"].value_counts().head(10).index, df["房屋户型"].value_counts().head(10).tolist()):
house_size_dict[house_size] = num
print(house_size_dict)
house_size_keys_list = [key for key, values in house_size_dict.items()]
house_size_values_list = [values for key, values in house_size_dict.items()]
p = (
Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", [list(z) for z in zip(house_size_keys_list, house_size_values_list)],
radius=["35%", "58%"],
center=["58%", "42%"])
.set_global_opts(title_opts=opts.TitleOpts(title="房屋面积大小的区间", pos_left="40%"),
legend_opts=opts.LegendOpts(orient="vertical",
pos_top="15%",
pos_left="10%"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
p.render("house_size.html")
output
我们可以看到占到大多数的都是“2室1厅1厨1卫”的户型,其次便是“1室1厅1厨1卫”的户型,可见上海二手房交易的市场卖的小户型为主。而他们的所在楼层,大多也是在高楼层(共6层)的为主,如下图所示
我们再来看一下房屋的装修情况,市场上的二手房大多都是以“简装”或者是“精装”为主,很少会看到“毛坯”的存在,具体如下图所示
至此,我们就暂时先说到这里,本篇文章主要是通过异步协程的方式来进行数据的抓取,相比较于常规的requests数据抓取而言,速度会更快一些。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28