
作者:俊欣
来源:关于数据分析与可视化
今天我们来聊一下如何用协程来进行数据的抓取,协程又称为是微线程,也被称为是用户级线程,在单线程的情况下完成多任务,多个任务按照一定顺序交替执行。
那么aiohttp模块在Python中作为异步的HTTP客户端/服务端框架,是基于asyncio的异步模块,可以用于实现异步爬虫,更快于requests的同步爬虫。下面我们就通过一个具体的案例来看一下该模块到底是如何实现异步爬虫的。
我们先来看一下发起请求的部分,代码如下
async def fetch(url, session): try: async with session.get(url, headers=headers, verify_ssl=False) as resp: if resp.status in [200, 201]:
logger.info("请求成功")
data = await resp.text() return data except Exception as e:
print(e)
logger.warning(e)
要是返回的状态码是200或者是201,则获取响应内容,下一步我们便是对响应内容的解析
这里用到的是PyQuery模块来对响应的内容进行解析,代码如下
def extract_elements(source): try:
dom = etree.HTML(source)
id = dom.xpath('......')[0]
title = dom.xpath('......')[0]
price = dom.xpath('.......')[0]
information = dict(re.compile('.......').findall(source))
information.update(title=title, price=price, url=id)
print(information)
asyncio.ensure_future(save_to_database(information, pool=pool)) except Exception as e:
print('解析详情页出错!')
logger.warning('解析详情页出错!') pass
最后则是将解析出来的内容存入至数据库当中
这里用到的是aiomysql模块,使用异步IO的方式保存数据到Mysql当中,要是不存在对应的数据表,我们则创建对应的表格,代码如下
async def save_to_database(information, pool): COLstr = '' # 列的字段 ROWstr = '' # 行字段 ColumnStyle = ' VARCHAR(255)' if len(information.keys()) == 14: for key in information.keys():
COLstr = COLstr + ' ' + key + ColumnStyle + ',' ROWstr = (ROWstr + '"%s"' + ',') % (information[key]) async with pool.acquire() as conn: async with conn.cursor() as cur: try: await cur.execute("SELECT * FROM %s" % (TABLE_NAME)) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: await cur.execute("CREATE TABLE %s (%s)" % (TABLE_NAME, COLstr[:-1])) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: pass
最后我们来看一下项目启动的代码,如下
async def consumer():
async with aiohttp.ClientSession() as session: while not stop: if len(urls) != 0:
_url = urls.pop() source = await fetch(_url, session)
extract_links(source) if len(links_detail) == 0:
print('目前没有待爬取的链接')
await asyncio.sleep(np.random.randint(5, 10))
continue link = links_detail.pop() if link not in crawled_links_detail:
asyncio.ensure_future(handle_elements(link, session))
我们通过调用ensure_future方法来安排协程的进行
async def handle_elements(link, session): print('开始获取: {}'.format(link))
source = await fetch(link, session) # 添加到已爬取的集合中 crawled_links_detail.add(link)
extract_elements(source)
下面我们针对抓取到的数据进行进一步的分析与可视化,数据源是关于上海的二手房的相关信息,我们先来看一下房屋户型的分布,代码如下
house_size_dict = {}
for house_size, num in zip(df["房屋户型"].value_counts().head(10).index, df["房屋户型"].value_counts().head(10).tolist()):
house_size_dict[house_size] = num
print(house_size_dict)
house_size_keys_list = [key for key, values in house_size_dict.items()]
house_size_values_list = [values for key, values in house_size_dict.items()]
p = (
Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", [list(z) for z in zip(house_size_keys_list, house_size_values_list)],
radius=["35%", "58%"],
center=["58%", "42%"])
.set_global_opts(title_opts=opts.TitleOpts(title="房屋面积大小的区间", pos_left="40%"),
legend_opts=opts.LegendOpts(orient="vertical",
pos_top="15%",
pos_left="10%"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
p.render("house_size.html")
output
我们可以看到占到大多数的都是“2室1厅1厨1卫”的户型,其次便是“1室1厅1厨1卫”的户型,可见上海二手房交易的市场卖的小户型为主。而他们的所在楼层,大多也是在高楼层(共6层)的为主,如下图所示
我们再来看一下房屋的装修情况,市场上的二手房大多都是以“简装”或者是“精装”为主,很少会看到“毛坯”的存在,具体如下图所示
至此,我们就暂时先说到这里,本篇文章主要是通过异步协程的方式来进行数据的抓取,相比较于常规的requests数据抓取而言,速度会更快一些。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14