京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pini Raviv,以色列初创公司的软件工程师和前端团队负责人。
数据科学是一个很好的工作领域,但像其他高度专业化的领域一样,你必须处理工作中的挫折。
根据我的经验,工作场所问题的主要来源是业务主管和数据团队之间的脱节。只有能够理解的数据才是有帮助和价值的。数据科学专业人员有时会因忘记这一事实而感到内疚。
沟通很重要,但是应该如何沟通?这里有五个技巧,你可以用来向业务利益相关者传达你想要表达的观点,这也将减少你与他们之间的摩擦。
创建相关的数据可视化
除非你的老板特别要求,否则避免大量的报告。人是视觉生物。我们通过图片来理解结论要比表格容易得多。数据可视化工具可以使您的分析变得生动,但挑战并没有就此结束。您仍然需要确保您的数据易于理解。
数据科学家没有时间来掌握平面设计,但有几个黑客你可以使用。在线工具,如Coolors和Paletton,可以帮助您创建既有吸引力又能解决观众色盲问题的配色方案。一个简单的DIY黑客是在一个在线照片编辑器中像素化你喜欢的图片,并提取那些颜色。
极简主义是通过图表传达你的结论的关键。删除图表中不会给你的广泛结论增加价值的呼出,如果呼出可以更好地传递信息,可以考虑删除X和Y轴标签。明智地选择字体,在整个演示文稿中不要使用两种以上的字体。谷歌免费字体,坚持这个公式。
在您的演示文稿中添加一些花哨的东西(动画、有趣的侧边栏等)是很有诱惑力的,但要避免这些东西,除非它们与您的涉众想要度量的核心相关。一般的业务用户都被数据吓倒了,而您的工作就是为他们简化数据。你的结论越容易理解,你就越不需要向管理层辩护你的工作,你会发现他们更愿意信任他们的数据。
始终提供上下文
在重分析的组织中有一种倾向,崇拜数据,忘记数据不是事实。事实上,数据在有上下文缠绕之前根本不是那么相关的。将数据上下文化是数据科学专业人员工作的一部分。管理层对数据的信任程度越高,就越应该关注数据的偏差、缺陷和完整性。
首先评估您是否从所有相关来源收集了数据。如果您忽略了重要的数据源,您将看到的只是一小部分的难题。始终考虑到您的数据可能存在于您尚未接触过的源中的可能性。
接下来,对数据进行分段,将其分解成小块。数据分割将帮助您对数据进行分类和深入挖掘。如果您的受众是普通的业务用户,那么始终将您的细分与业务目标联系起来,而不是与感兴趣的技术目标联系起来。
记住您的听众
数据科学家常常因为忘记了他们的听众,迷失在他们数据的技术细节中而感到内疚。您可能必须开发创造性的编码解决方案才能得出结论,但如果您的听众不是技术人员,他们可能不会关心。
例如,假设你的经理要求你提供一份报告,列出上个月每个日期销量最高的产品。按日期对最畅销的产品进行分组是很容易的,但你需要做的是只按日期显示性能最好的产品。Postgres和Redshift的窗口函数简化了这一点。
但是,如果您的组织使用MySQL怎么办?您需要使用group_concat将数据滚动到按日期分组的CSV字符串中,然后使用substring_index提取最佳执行者。打得好!然而,你的经理并不关心你的技术魔法。她只想要结果。
关注你的听众可以让你管理他们的期望。数据科学家的一个常见抱怨是,管理层倾向于强加不现实的要求。在业务用户看来微不足道的事情往往需要复杂的技术解决方案。与其深入研究任务的技术细节,不如用业务术语告诉他们后果。
例如,您可以让他们知道他们的请求将需要一周来完成,而不是一天。通过这样的交流,你将会说出他们的语言,而不是给人留下一个技术炫耀者的印象。对于一般业务用户来说,数据是一个黑盒子。你的工作是为他们翻译,而不是教他们需要做什么。
设置期望
管理层经常在最后一分钟添加变量请求,数据建模人员咧嘴笑着承受它们。这些最后一分钟的请求通常需要额外几天的数据收集和清理,并将截止日期推得更远。
另一个常见的情况是处理不合理的请求。您的公司可能只有一个月的数据,但可能需要一年的销售预测。管理层可能听说过ML和统计技术填补数据漏洞的能力,并可能期望您将这些技术插入进来以获得结果。
你必须在每一项任务之前设定期望,以避免接下来的问题。合并可变的提交截止日期和使用业务友好的语言生成数据质量报告通常是设置期望的有效方法。
坚持流程
好的数据分析要求您花时间了解您的数据集并理解它们的来源。在快节奏的环境中,您可能希望匆忙进入分析部分并生成报告。
请记住,您作为数据分析师的职能是为业务目标服务。
产生错误的报告只会削弱组织对你的信任。许多企业经理习惯于依靠自己的直觉,不信任数据。跳过部分流程来生成快速报告不会让他们更信任你。
始终通信
沟通是为组织创造价值的关键。数据科学家可能会陷入技术细节的泥潭,并以对业务不友好的方式进行交流。这些技巧将帮助你避免落入这个陷阱,你将设法为高管提供对他们业务的真正洞察力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22