
作者:俊欣
来源:关于数据分析与可视化
今天我们来聊一下Pandas当中的数据集中带有多重索引的数据分析实战
通常我们接触比较多的是单层索引(左图),而多级索引也就意味着数据集当中的行索引有多个层级(右图),具体的如下图所示
AUTUMN
我们先导入数据与pandas模块。
import pandas as pd ## 导入数据集 df = pd.read_csv('dataset.csv')
df.head()
output
该数据集描述的是英国部分城市在2019年7月1日至7月4日期间的全天天气状况,我们先来看一下当前的数据集的行索引有哪些?代码如下
df.index.names
output
FrozenList(['City', 'Date'])
数据集当中City、Date,这里的City我们可以当作是第一层级索引,而Date则是第二层级索引。
我们也可以通过调用sort_index()方法来按照数据集的行索引来进行排序,代码如下
df_1 = df.sort_index() df_1
output
要是我们想将这个多层索引去除掉,就调用reset_index()方法,代码如下
df.reset_index()
下面我们就开始针对多层索引来对数据集进行一些分析的实战吧
在pandas当中数据筛选的方法,一般我们是调用loc以及iloc方法,同样地,在多层级索引的数据集当中数据的筛选也是调用该两种方法,例如筛选出伦敦白天的天气状况如何,代码如下
df_1.loc['London' , 'Day']
output
要是我们想针对所有的行,就可以这么来做
df_1.loc[:, 'Day']
output
同理针对所有的列,就可以这么来做
df_1.loc['London' , :]
output
要是我们想看伦敦2019年7月1日白天的天气状况,就可以这么来做
df.loc['London', 'Day'].loc['2019-07-01']
output
Weather Shower Wind SW 16 mph Max Temperature 28 Name: 2019-07-01, dtype: object
这里我们进行了两次数据筛选的操作,先是df.loc['London', 'Day'],然后再此的基础之上再进行loc['2019-07-01']操作,当然还有更加方便的步骤,代码如下
df.loc[('London', '2019-07-01'), 'Day']
output
Weather Shower Wind SW 16 mph Max Temperature 28 Name: 2019-07-01, dtype: object
除此之外我们要是想看一下伦敦2019年7月1日和7月2日两天白天的天气情况,就可以这么来做
df.loc[
('London' , ['2019-07-01','2019-07-02'] ) , 'Day' ]
output
在此基础之上,我们想要看天气和风速这两列,我们也可以单独摘出来,代码如下
df.loc[ 'London' ,
('Day', ['Weather', 'Wind'])
]
output
对于第一层级的索引而言,我们同样还是调用loc方法来实现
df.loc[ 'Cambridge':'Oxford', 'Day' ]
output
但是对于第二层级的索引,要是用同样的方式来用就会报错,
df.loc[
('London', '2019-07-01': '2019-07-03'), 'Day' ]
output
SyntaxError: invalid syntax (<ipython-input-22-176180497f92>, line 3)
正确的写法代码如下
df.loc[
('London','2019-07-01'):('London','2019-07-03'), 'Day' ]
output
对于单层索引而言,我们通过:来筛选出所有的内容,但是在多层级的索引上面则并不适用,
# 出现语法错误 df.loc[
('London', :), 'Day' ] # 出现语法错误 df.loc[
(: , '2019-07-04'), 'Day' ]
正确的做法如下所示
# 筛选出伦敦下面所有天数的白天天气情况 df.loc[
('London', slice(None)), 'Day' ]
output
# 筛选出2019年7月4日下所有城市的白天天气情况 df.loc[
(slice(None) , '2019-07-04'), 'Day' ]
output
当然这里还有更加简便的方法,我们通过调用pandas当中IndexSlice函数来实现,代码如下
from pandas import IndexSlice as idx
df.loc[
idx[: , '2019-07-04'], 'Day' ]
output
又或者是
rows = idx[: , '2019-07-01']
cols = idx['Day' , ['Max Temperature','Weather']]
df.loc[rows, cols]
output
对于多层级索引的数据集而言,调用xs()方法能够更加方便地进行数据的筛选,例如我们想要筛选出日期是2019年7月4日的所有数据,代码如下
df.xs('2019-07-04', level='Date')
output
我们需要在level参数上指定是哪个标签,例如我们想要筛选出伦敦2019年7月4日全天的天气情况,代码如下
df.xs(('London', '2019-07-04'), level=['City','Date'])
output
最后xs方法可以和上面提到的IndexSlice函数联用,针对多层级的数据集来进行数据的筛选,例如我们想要筛选出2019年7月2日至7月4日,伦敦全天的天气状况,代码如下
rows= (
idx['2019-07-02':'2019-07-04'], 'London' )
df.xs(
rows ,
level = ['Date','City']
)
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26