
作者:極光
来源:Python 技术
正则表达式相信大家应该都不陌生,本质上就是一种微小的、高度专业化的编程语言,使用它你可以为要匹配的可能字符串集指定规则。大多数编程语言正则语法基本相似,只是实现正则的函数库不同,今天就来跟大家一起了解下 Python 支持正则表达式的函数。
正则最简单的应用,就是对字符串进行操作,用来找出想要匹配的字符串,比如 Python 就只会匹配字符串 Python ,当然也可以设置不区分大小写,这样就可以匹配更多,比如 python、pyThon等。
如果还想来点复杂的匹配要怎么做,这就需要用到元字符了,下面就是所有的元字符:
// 元字符 [ ] ( ) . ^ $ * + ? { } |
这一对元字符主要用于指定字符类,也就是你想要匹配的一组字符。
比如:[asd] 就是要匹配任何字符 a, s, d,但如果想匹配 a b c d e …… x y z 是不是要把所有的都写一遍?当然不是了,这个我们可以写成 [a-z] 就行了,- 就是用来表示一个范围,再比如表示数字 1 至 9,可以写成 [1-9] 。
上面说的是包含的字符范围,如果想匹配不包含的范围要怎么做?这就要用到元字符 ^,比如匹配除了 n, u, 3 之外的字符,可以写成 [^nu3]。
还有一点需要注意,在 [ ] 中的元字符会作为普通字符匹配,比如 [$+] 就会匹配 $, +。
最后说下元字符 ,它的意义是用于转义所有元字符,也就是去掉元字符的特殊性,比如 {$\,其实就是匹配字串 {, $, 。
上面说了 [a-z] 可以匹配所有小写字母,[0-9] 用来匹配所有数字,这样已经够简单了,还有更简单的几种特殊范围表达方式。
字符说明.匹配除 "n" 之外的任何单个字符。要匹配包括 'n' 在内的任何字符,请使用象 '[.n]' 的模式。d相当于[0-9],即匹配一个数字字符。D相当于[^0-9],即匹配一个非数字字符。s相当于[fnrtv],也就是匹配任何空白字符,包括空格、制表符、换页符等等。S相当于[^fnrtv],匹配任何非空白字符。w相当于[a-zA-Z0-9_],匹配任何字母与数字字符。W相当于[^a-zA-Z0-9_],匹配任何非字母与数字字符。
上面这些特殊序列可以包含在字符类中,比如 [sd,] 即匹配任何空白字符,数字和 ,。
只是做到匹配字符串集合,肯定是不够的,它还有个更大的优势,那就是可以指定某一部分字符是重复的,并且可以指定重复的次数。
先说第一个表示重复的元字符 *,它用来指定前面一个字符可以重复0次或者多次。
比如 ap*le 将会匹配 apple,appple,ale 等等。
这里当重复正则时,匹配引擎会尝试尽可能多的重复它。当发现模式的后续部分不匹配,则匹配引擎将会回退并以较少的重复次数再次尝试。
另一个重复的元字符 +,它用来表示前一个字符可重复1次或多次。它跟 * 相比,其实就是少了一个重复0次,也就是上面 ap*le 换成 ap+le 不会出现匹配到 ale。
第三个元字符就是 ?,它用来表示前一个字符可重复0次或1次,把上面的例子换成 ap?le,其实就是两个字符串 ale 或 aple。
最后一个复杂些就是 {m,n},这个表示前一个字符可重复次数是一个区间,也就是最少重复m次,最多重复n次。
例如 ap{2,3}le将会匹配 apple,appple 两个字符串,其他都不会匹配。
在这里需要注意下,m 需要小于 n,当然 m 或 n 也是可以省略的。比如当 m=0 时,可以省略 m,当 n 为无穷大时,也可以省略 n。
对!你没看错,如果想使用正则表达式,首先得要把它编译成模式对象。编译成对象后,它就可以使用各种操作方法了,比如字串匹配查询或替换等。
Python 编译的方法是 re.compile('正则表达式'),比如 re.compile('ap?le')。
当然也可以传一些特殊的参数,比如忽略大小写,那上面的编译方法就可以写成 re.compile('ap?le', re.IGNORECASE),这样在匹配字串时就可以忽略大小写了。
那除了这个还有别的参数吗?有,下面我把一部分常用的参数列出来,对了参数还可以简写,比如刚才使用的 re.IGNORECASE 可以简写成 re.I,这样就方便多了。
以下是常用编译参数:
参数简写说明IGNORECASEI忽略大小写ASCIIA使几个转义(w、b、s和d)匹配仅与具有相应特征属性的 ASCII 字符匹配DOTALLS使 . 匹配任何字符,包括换行符LOCALEL进行区域设置感知匹配MULTILINEM多行匹配,影响 ^ 和 $VERBOSEX忽略正则字符串中的空格,除非空格位于字符类中或前面带有未转义的反斜杠,可以组织和缩进,还可以写注释
大部分都容易理解,只是最后一个参数 VERBOSE 可能不太容易理解,这里给大家个官方的例子看下就理解了。
test = re.compile(r"""
&[#] # 数字开始部分
(
0[0-7]+ # 八进制
| [0-9]+ # 小数形式
| x[0-9a-fA-F]+ # 十六进制
)
; # 结束分号
""", re.VERBOSE)
其实上面说的编译都只是在做准备,准备接下来要介绍的,正则表达式最重要的查询匹配。
常用匹配方法:
上面这些方法,如果匹配成功,会返回一个对象实例,其中包含匹配相关的信息:起始和终结位置、匹配的子串以及其它信息。
// 示例代码
import re
ret = re.compile('[0-9]+')
ret.match("apple") // 返回 None
ret.match("12189") // 返回 <re.Match object; span=(0, 5), match='12189'>
ret.match("121ab") // 返回 <re.Match object; span=(0, 3), match='121'>
好了,今天我们简单介绍了下正则表达式,以及在 Python 中如何使用正则表达式,其实以上这些只是基础,后续还会为大家介绍更多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28