
数据科学和机器学习可以以不同程度的效率和生产力进行实践。无论应用领域或专业,数据科学家--初学者或经验丰富的专业人员--都应努力提高他/她在典型数据科学任务的所有方面的效率,
这意味着执行所有这些任务,
让我们假设有人正在教授“生产性数据科学”课程或写一本关于它的书--使用Python作为语言框架。对这样一门课程或一本书的典型期望应该是什么?
本课程/书应该面向那些希望超越执行数据科学和机器学习任务的标准方式并利用Python数据科学生态系统的全部范围以获得更高生产力水平的人。
应该教读者如何在标准流程中寻找低效和瓶颈,以及如何跳出框框思考。
重复性数据科学任务的自动化是阅读本书的读者将培养的一个关键心态。在许多情况下,他们还将学习如何扩展现有的编码实践,以便在Python生态系统中已经存在但在任何标准数据科学中都没有教授的高级软件工具的帮助下高效率地处理更大的数据集。
这不应该是一个常规的Python烹饪书教学标准库,如Numpy或Pandas。
相反,它应该关注一些有用的技术,比如如何测量ML模型的内存占用和执行速度、质量测试数据科学管道、模块化应用程序开发的数据科学管道,等等。它还应该包括Python库,这些库非常适合于自动化和加速任何数据科学家的日常任务。
此外,它应该涉及帮助数据科学家处理大型复杂数据集的工具和包,而不是遵循标准的Python数据科学技术智慧。
为了把事情具体化,让我们总结一些学习和实践生产性数据科学需要掌握的具体技能。我也尝试着加入一些有代表性的文章的链接,作为每一项技能的参考。
虽然GPU和分布式计算的使用在学术界和企业界被广泛讨论用于核心AI/ML任务,但他们发现它们在常规数据科学和数据工程任务中的应用很少覆盖。然而,使用GPU进行常规的日常统计分析或其他数据科学任务将大大有助于成为众所周知的“高效数据科学家”。
例如,theRAPIDS软件库套件和Apis让您--一个普通的数据科学家(不一定是深度学习从业者)--可以选择和灵活地完全在GPU上执行端到端数据科学和分析管道。
即使使用一个普通的GPU,这些库在速度上也比普通的Python库有了显著的提高。当然,对于生产性数据科学工作流,我们应该尽可能地采用这些方法。
类似地,有极好的开源机会可以超越Python语言的单核特性的限制,在不偏离典型的数据科学家角色的情况下接受并行计算范例。
我们讨论了生产性数据科学工作流的实用程序和核心组件。我们想像一个关于这个主题的理想课程或书籍会给读者提供什么。我们提到了一些具体的例子,并说明了这些好处。在要掌握的技能的上下文中还提供了一些相关的资源。
您可以查看作者的GitHub存储库以获取机器学习和数据科学方面的代码、思想和资源。如果你和我一样,对人工智能/机器学习/数据科学充满热情,请在LinkedIn上添加我或在Twitter上关注我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03