京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这篇文章的目的不是比较角色,好像一个人应该得到更多的钱或不应该得到更多的钱,而是一个指导,允许这两个领域的专业人士根据他们目前的工资进行评估。然而,这是陈词滥调,当要求更高的工资时,记住这两件事仍然很重要:要求无妨,有时,你不会得到你没有要求的东西。请记住,这些是更一般的统计数据,因为你可以根据你想要的具体情况来了解你的工资应该是多少。相反,这些值是供您使用的方向性指南。
数据科学家和数据工程师彼此分享某些技能和经验,然而,也有一些关键的差异,这些差异可能导致不同的工资。话虽如此,让我们从真实数据中跳到下面这两个角色的一些薪酬例子。
由于我已经写了几篇关于数据科学薪酬的文章,我将在这里包括最重要的信息,以及几个不同的例子。
以下是作为数据科学家,你可以看到的一些预期的职位,这些职位的工资也可能会有很大的变化:
入门级数据科学家→数据科学家→高级数据科学家
首席数据科学家-数据科学经理-数据科学总监
除了这些头衔,还有一些资历级别,如I级、II级和III级。
下面,我将按职称和他们各自所需或预期的年数显示工资范围。
请记住,这些角色基于美国平均值(基于PayScale[3]):
我同意这些数字吗?
没有。
如果你读过以前的文章,下面是我将包括不同城市的报告工资,以及不同的技能。
以下是具体的城市和技能:
城市的平均工资本身似乎更符合现实,而与城市相关的具体技能似乎太低了。我相信这是因为当你按照特定的技能进行过滤时,你就会剥离掉所有其他的技能。因此,一个解决办法可能是找到城市的平均工资,然后比较以上技能之间的差异,以获得更现实的工资估计。
我确实认为NLP技能不如Tableau有利可图是很有趣的,然而,我认为NLP可能太具体了,可能更少被误解,而Tableau被广泛理解,大多数数据科学家不认为在他们的简历中添加这一点,因为它更多的是面向数据分析师的--在你意识到你的工资或编辑你的简历时,这一点可能需要记住--长话短说,不要做假设,用你的技能来寻找独特的东西。
我不知道很多使用Java的数据科学家,但我确实认为这些报告中包含的数据有这种技能作为选择是很有趣的,所以也许Java有一个市场,原因我不确定(也许,这是软件工程师向数据科学家的过渡)。
现在,我们对数据科学的工资有了很好的了解,包括不同的因素,如地点和技能,让我们更深入地研究一下更具体的数据工程师工资是什么样子的。
在所有这些薪酬比较中,数据工程师和数据科学家似乎有一个更相似的范围,我们将在下面看到。
以下是作为一名数据工程师,你可以看到的一些预期的职位,这些职位的工资也可能会有很大的变化:
数据工程师→高级数据工程师→数据工程经理
首席软件工程师-数据科学家(是的,专攻数据工程)
除了这些头衔,还有一些资历级别,如I级、II级和III级。
下面,我将按职称和他们各自所需或预期的年数显示工资范围。
请记住,这些角色基于美国平均值(基于PayScale[5]):
我同意这些数字吗?
没有。
我认为每个职位至少应该换一次,因为在职业生涯早期,工资应该是职业生涯中期或有经验的数据工程师的工资,这也取决于你住在哪里--所以让我们深入研究具体的平均位置。
这些城市平均数比总体平均数更有意义。最有趣的是旧金山的不同,然而,仍然是意料之中的,因为那里的生活成本高得令人难以置信。
现在,让我们来看看这些城市的具体技能:
在所有这些工资中,旧金山市的工资在增加一项技能时有所下降--这一声明重申,在查看个性化报告时,你可能想增加所有技能,而不仅仅是一项技能。纽约看到了Scala最大的进步,我个人同意这一点,因为它是一项伟大的技能,很难掌握。
Salary has several characteristics that can either allow it to increase or decrease. We just talked about two factors, years of experience, location (city) and skills. There are other factors to consider as well, including, but not limited to: the interview itself, resume itself, negotiation skills, bonuses, shares, education, and certifications.
概括地说,以下是数据科学家与数据工程师薪酬的一些关键要点:
*美国数据工程师平均薪金92,519美元
*这两个职位的薪酬范围可能最相似
*数据科学家更专注于从现有的Python打包机器学习算法中创建模型,而数据工程师更专注于利用SQL对数据进行ETL/ELT
*有几个因素影响工资,最重要的可能是资历、城市和技能
我希望你觉得我的文章既有趣又有用。如果你同意或不同意这些工资比较,请随时在下面发表评论。为什么或为什么不?你认为在工资方面还有哪些重要的因素需要指出?这些当然可以进一步澄清,但我希望我能够揭示一些数据科学家和数据工程师工资之间的差异。
最后,我可以再问一遍同样的问题,你如何看待偏远职位对薪酬的影响,尤其是当城市是决定薪酬的一个重要因素时?
我也写了一篇类似的文章,讨论机器学习工程师的工资与数据科学家的工资在这里[6],以及数据科学家和数据分析师的工资在这里[7]的区别。这篇文章概述并强调了每一个,各自的工资的类似特点。请记住,对于这两篇文章,这些都不是我的工资,而是由PayScale和其他实际的数据科学家、数据工程师、数据分析师和机器学习工程师报告的。因此,这些文章是围绕真实数据进行的讨论,目的是让您更好地理解是什么使一个角色(一般)根据某些因素增加或减少工资金额。
同样,这个工资数据是从PayScale收集的,如果你想要一个更具体的估计,那么你可以使用salary survey[8]。
[1] Photo byRyan QuintalonUnsplash, (2019)
[2]Copernicoonunsplash的照片,(2020)
[3]PayScale,数据科学家薪酬,(2021)
[4]照片byFotis FotopoulosonUnsplash,(2018)
[5]PayScale,数据工程师薪酬,(2021)
[6]M.Przybyla,《数据科学家vs机器学习工程师工资》,(2021)
[7]M.Przybyla,《数据科学家vs数据分析师工资》,(2021)
[8]PayScale,PayScale薪酬调查,(2021)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22