
这篇文章的目的不是比较角色,好像一个人应该得到更多的钱或不应该得到更多的钱,而是一个指导,允许这两个领域的专业人士根据他们目前的工资进行评估。然而,这是陈词滥调,当要求更高的工资时,记住这两件事仍然很重要:要求无妨,有时,你不会得到你没有要求的东西。请记住,这些是更一般的统计数据,因为你可以根据你想要的具体情况来了解你的工资应该是多少。相反,这些值是供您使用的方向性指南。
数据科学家和数据工程师彼此分享某些技能和经验,然而,也有一些关键的差异,这些差异可能导致不同的工资。话虽如此,让我们从真实数据中跳到下面这两个角色的一些薪酬例子。
由于我已经写了几篇关于数据科学薪酬的文章,我将在这里包括最重要的信息,以及几个不同的例子。
以下是作为数据科学家,你可以看到的一些预期的职位,这些职位的工资也可能会有很大的变化:
入门级数据科学家→数据科学家→高级数据科学家
首席数据科学家-数据科学经理-数据科学总监
除了这些头衔,还有一些资历级别,如I级、II级和III级。
下面,我将按职称和他们各自所需或预期的年数显示工资范围。
请记住,这些角色基于美国平均值(基于PayScale[3]):
我同意这些数字吗?
没有。
如果你读过以前的文章,下面是我将包括不同城市的报告工资,以及不同的技能。
以下是具体的城市和技能:
城市的平均工资本身似乎更符合现实,而与城市相关的具体技能似乎太低了。我相信这是因为当你按照特定的技能进行过滤时,你就会剥离掉所有其他的技能。因此,一个解决办法可能是找到城市的平均工资,然后比较以上技能之间的差异,以获得更现实的工资估计。
我确实认为NLP技能不如Tableau有利可图是很有趣的,然而,我认为NLP可能太具体了,可能更少被误解,而Tableau被广泛理解,大多数数据科学家不认为在他们的简历中添加这一点,因为它更多的是面向数据分析师的--在你意识到你的工资或编辑你的简历时,这一点可能需要记住--长话短说,不要做假设,用你的技能来寻找独特的东西。
我不知道很多使用Java的数据科学家,但我确实认为这些报告中包含的数据有这种技能作为选择是很有趣的,所以也许Java有一个市场,原因我不确定(也许,这是软件工程师向数据科学家的过渡)。
现在,我们对数据科学的工资有了很好的了解,包括不同的因素,如地点和技能,让我们更深入地研究一下更具体的数据工程师工资是什么样子的。
在所有这些薪酬比较中,数据工程师和数据科学家似乎有一个更相似的范围,我们将在下面看到。
以下是作为一名数据工程师,你可以看到的一些预期的职位,这些职位的工资也可能会有很大的变化:
数据工程师→高级数据工程师→数据工程经理
首席软件工程师-数据科学家(是的,专攻数据工程)
除了这些头衔,还有一些资历级别,如I级、II级和III级。
下面,我将按职称和他们各自所需或预期的年数显示工资范围。
请记住,这些角色基于美国平均值(基于PayScale[5]):
我同意这些数字吗?
没有。
我认为每个职位至少应该换一次,因为在职业生涯早期,工资应该是职业生涯中期或有经验的数据工程师的工资,这也取决于你住在哪里--所以让我们深入研究具体的平均位置。
这些城市平均数比总体平均数更有意义。最有趣的是旧金山的不同,然而,仍然是意料之中的,因为那里的生活成本高得令人难以置信。
现在,让我们来看看这些城市的具体技能:
在所有这些工资中,旧金山市的工资在增加一项技能时有所下降--这一声明重申,在查看个性化报告时,你可能想增加所有技能,而不仅仅是一项技能。纽约看到了Scala最大的进步,我个人同意这一点,因为它是一项伟大的技能,很难掌握。
Salary has several characteristics that can either allow it to increase or decrease. We just talked about two factors, years of experience, location (city) and skills. There are other factors to consider as well, including, but not limited to: the interview itself, resume itself, negotiation skills, bonuses, shares, education, and certifications.
概括地说,以下是数据科学家与数据工程师薪酬的一些关键要点:
*美国数据工程师平均薪金92,519美元
*这两个职位的薪酬范围可能最相似
*数据科学家更专注于从现有的Python打包机器学习算法中创建模型,而数据工程师更专注于利用SQL对数据进行ETL/ELT
*有几个因素影响工资,最重要的可能是资历、城市和技能
我希望你觉得我的文章既有趣又有用。如果你同意或不同意这些工资比较,请随时在下面发表评论。为什么或为什么不?你认为在工资方面还有哪些重要的因素需要指出?这些当然可以进一步澄清,但我希望我能够揭示一些数据科学家和数据工程师工资之间的差异。
最后,我可以再问一遍同样的问题,你如何看待偏远职位对薪酬的影响,尤其是当城市是决定薪酬的一个重要因素时?
我也写了一篇类似的文章,讨论机器学习工程师的工资与数据科学家的工资在这里[6],以及数据科学家和数据分析师的工资在这里[7]的区别。这篇文章概述并强调了每一个,各自的工资的类似特点。请记住,对于这两篇文章,这些都不是我的工资,而是由PayScale和其他实际的数据科学家、数据工程师、数据分析师和机器学习工程师报告的。因此,这些文章是围绕真实数据进行的讨论,目的是让您更好地理解是什么使一个角色(一般)根据某些因素增加或减少工资金额。
同样,这个工资数据是从PayScale收集的,如果你想要一个更具体的估计,那么你可以使用salary survey[8]。
[1] Photo byRyan QuintalonUnsplash, (2019)
[2]Copernicoonunsplash的照片,(2020)
[3]PayScale,数据科学家薪酬,(2021)
[4]照片byFotis FotopoulosonUnsplash,(2018)
[5]PayScale,数据工程师薪酬,(2021)
[6]M.Przybyla,《数据科学家vs机器学习工程师工资》,(2021)
[7]M.Przybyla,《数据科学家vs数据分析师工资》,(2021)
[8]PayScale,PayScale薪酬调查,(2021)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01