
CDA数据分析师 出品
作者:徐杨老师
编辑:Mika
同学们大家好,我是徐杨老师,今天给大家分享一个现在前沿的业务分析方法。
现在有一个非常前沿的词叫做数据漂移,可能有一部分同学听说过,英文是Data Drift。
数据漂移是什么?
那么,什么叫做数据漂移呢?
我们举个例子,现在有一个APP非常火,叫做国家反诈中心APP。
我们知道,如今网络诈骗是一个很让大家头疼的问题,那么假如说你作为公司的分析师,也受命需要去开发一套用来给你的企业识别异常用户的一套分析模型。
经常我们会碰到的一个问题是,你花了很大的力气把分析模型都构造好了,上线以后很快发现,这个模型明明知道之前在测试集上跑的效果还不错,但是实际上线部署以后模型的效果会快速下降,这是为什么呢?
其实很简单。不止我们作为分析师的分析能力在进化,那些犯罪分子的犯罪方法也是太进化的。也就是说如果我们用的是以前的分析方法来识别新的犯罪分子的犯罪手段,肯定效果是要大打折扣的。
从技术语言来说,如果我们是用以前的数据训练出的模型来分析现在的一些新数据,那么这就是训练模型的时候,我们面对的数据分布和我们实际模型上线部署时,面对的数据分布是产生了变化的。
这种问题就叫做数据漂移。
现在一般在业界解决数据漂移比较经典的方法是引入自动机器学习。
同学们知道我们一般做数据分析的时候是先收集数据,然后构造模型,最后输出分析结果。
那么我们就可以在最后输出分析结果的地方,增加一般叫做monitor,或者说叫做模型监控的这样一段代码。
它的作用是实时分析,现在模型预测的效果是好是坏,然后调整的不是模型,调整的是谁呢?
如果监测出问题,调整的是我们收集数据这个环节的工作。然后通过收集更新的数据,实时去调整模型里面的参数,然后再继续去监控我现在自动更新出的模型效果如何。
总结一下就是,传统的方法是我们在训练模型的时候,拿到的数据集是固定的,我们动的是我们选择哪些模型,模型里的参数怎么调优,怎么给出最后好的方法组合。这是我们传统的方法,固定数据,动模型,动参数。
现在更新的方法是,我们首先要保证我们的模型训练的没有问题,然后固定模型,动数据。
那么,应该怎么动数据?怎么去拿到新的数据?
是看我们监控到的模型分析结果来,反过来决定我们要在哪些地方埋下更多的点,拿到更新的数据,以及拿到哪些有用的特征,去实时的更新模型里面的超参数。
这是现在用来解决数据漂移一个比较前沿的分析方法,希望对大家有帮助。
好,以上就是今天的分享。如果大家还有数据分析方面相关的疑问,就在评论区留言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26