
当你考虑你的第一份数据科学工作或你的下一个数据科学职位时,你会想问自己什么是重要的。对我来说,我在数据科学方面有过几个职位,这些是我认为在选择下一份工作时必须考虑的一些最关键的问题。
学习数据科学通常包括掌握机器学习算法,但有一个很大的部分在学术界经常被忽视,那就是这些算法的运算。原因可能是有许多不同的方法来部署您的模型,并且许多选项可能包括已经集成到您的业务中的昂贵的特定平台。由于这种可变性,学校或项目可能会选择不在教学大纲中包括操作,这是可以理解的。
话虽如此,您很可能想问这项工作是否是您作为数据科学家的责任,或者是否有一个专门的MLOps工程师(或机器学习工程师等)。当然,有些人可以做到这两个方面,并且更喜欢掌握创建和部署模型过程的两个部分,但是仅仅是专注于算法的数据科学家也是可以的。与你未来或现在的经理明确这个定义甚至更重要。
与上述考虑类似,您将想要询问您的团队中是否有SQL专家。一些数据科学职位几乎不需要SQL,而其他职位几乎每天都需要SQL。在您的面试中,您将希望缩小您可以期望执行的SQL的数量,以及您是否是唯一的SQL。
有时,还有其他人,如数据分析师、业务分析师或数据工程师,他们更像是一名专家,使用SQL。然而,在一些数据科学职位上,您将被要求在建模过程之前和之后查询您的数据。
在进入一个专业数据科学家角色之前,一次一个项目听起来似乎是一项简单的任务,但它可以很快变成一个全职项目。
对于任何一个特定项目,您都可以执行以下步骤:
数据科学的一些职位会有一个项目,只有一个人在上面工作,而在其他角色中,有几个人在同一个模型上工作。人们按照自己的节奏前进,与其他日子相比,有或多或少的效率,每天都可以享受或不享受与其他人在同一个项目上工作。
最终要由你来决定你喜欢什么,同样重要的是在进入一个角色之前知道你的期望是什么。
算法/模型创建的测试快得惊人。在开发一个模型并将其集成到您的业务中时,前后部分可能会占用大部分时间。
对于任何项目来说,时间线都可以波动,就像上面的其他考虑一样,它是关于期望的--需要多少工作才能获得有用的结果。
总的来说,重要的是要记住,当你接受数据科学角色(或任何角色)的面试时,你应该同样地面试他们,这些只是你可以问和提出的一些问题或考虑因素。此外,即使在当前的角色中,您仍然可以提出这些问题。
概括地说,在选择下一份数据科学工作之前,需要记住以下五点:
谢谢你的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28