京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果我们能说我们什么都知道,我们都会喜欢的。不幸的是,这是不可能的。有时我会告诉自己“我什么都不知道”,以此来推动自己学习,不断提高。
数据科学是那些需要不断学习的领域之一,并且总是有改进的空间。在数据科学的世界里,很难保持在事情的顶端并感到成就感。一旦你学完了一件事,并对它感到自信,你就会发现自己在寻找新的主题或领域去学习。
没人能坐在这里说他们什么都知道。你有资深的数据科学家,他们在这个领域工作了10年以上,仍然需要谷歌如何加入两个数据集。这并不意味着他们不知道它,他们可能只是在一段时间内没有使用该代码,他们已经忘记了。
一旦您开始在数据科学领域工作,您将与其他数据科学家、分析师、机器学习工程师以及更多的相互交流知识。然而,你可能不知道你的同事做的事情,反之亦然。然而,在你不知道的情况下告诉你的同事你知道一些事情,有时会损害你的信心。
如果手头的任务你不知道做可以简单地用谷歌,看一个YouTube视频,或看看堆栈溢出解决,那就太好了。但是,如果你继续不停地告诉你的同事或老板你知道一些事情,而你不知道;你会发现自己淹没在额外的学习中。相反,你可以说“对不起,但我不知道怎么做”。这样,你的同事和老板就会了解你的优势和劣势,为你提供正确的支持/培训,以便你在特定的领域有所提高。
这也适用于担任高级职务的人。如果你没有正确的技能来管理和指导一个团队,你会不知所措,压力水平会增加,这可能会让你考虑你的位置。
你的第一份工作总是让人害怕。说出自己的观点你会感到焦虑和紧张。我将介绍几点,我认为每个人都应该融入他们的工作和个人生活。
你不必事事出类拔萃。然而,要从事数据科学,你需要基本的技能。如果你是一名数据科学家,喜欢数据争论,创建数据可视化,但在构建机器学习模型方面几乎没有经验;这是你的一个弱点,你可以努力解决。向自己承认,你不会在数据科学家手中的每一项技能上都取得进步,这是成长为数据科学家的第一步。
一旦你确定了自己的长处和短处,你喜欢什么,不知道什么;你可以缩小自我发展的范围。如果你对成为机器学习工程师特别感兴趣,你作为数据科学家的技能将派上用场。然而,您需要研究诸如算法、自然语言处理、神经网络等学习领域。
你需要了解哪些技能对你的职业生涯是有益的,目前或将来。如果你的职业规划要求你使用Python和R作为编程语言,那么学习另一种语言如HTML就没有用了。你不会想做什么都是菜鸟,什么都不是高手。
如果你不问,你就得不到。数据科学家的角色需要大量的技术技能,以及软技能。这是不幸的,但许多人会认为你会知道如何做几乎所有的事情,因为你申请了一个特定的角色。我们已经知道,事实并非如此。总是有改进的空间和学习不同技能的时间。
如果工作中的一个项目有一个严格的最后期限,你被要求完成一个特定的任务来快速跟踪这个过程,然而,你不知道如何处理它,因为你不具备这些技能。你会发现自己陷入困境。从长远来看,直言不讳地告诉你的同事你能做什么和不能做什么,而不是感到紧张和羞耻,会拯救你。你可能会被分配另一项任务,其他团队成员都知道你很乐意做,以确保每个人都能在最后期限前完成。
与你的前辈谈论你的弱点,开启了一场关于自我发展的对话。公司可能希望你在这些方面有所改进,并让你接受特定的培训,或者在工作时间为你分配自我发展时间来支持你。如果一家公司能帮助你成为最好的数据科学家之一,他们会的。
另一方面,你可能会觉得分配给你的任务低于你的技能。重要的是,不要把一天的时间花在做一些简单的事情上,而这些事情对你在另一个领域有好处。这是爬上梯子最简单的方法。和你的上司谈谈你的优势,以及他们如何提高公司的效率,可以解决许多业务问题。这是一个双赢的局面。
申请合适的工作
众所周知,人们申请需要特定技能的空缺职位,但自己并不具备这些技能。如果你这样做,你就会失败。与其根据薪水来申请工作,不如根据你目前的技能来申请。
做一份入门级的工作,培养你的技能,然后从那里开始努力,并没有什么坏处。谦卑自己,量入为出是建立职业生涯的第一步。关键字是'building'。它不会交给你,所以你必须从某个地方开始。宁可从头开始工作,也不要从头上摔下来。
在线课程
有各种各样的在线课程,你可以参加,以提高和增加你的技能。您可以通过Udemy、Coursera、Udacity等学习课程。他们可以学习特定的编程语言,如Python或C++,或者理解数据库管理和SQL。
阅读
网上有很多阅读材料可以帮助你提高对各种主题的理解。教科书,学术论文在网上以及KDNuggets等平台上都可以获得,为您提供优质的资源材料来指导,帮助您理解和建立您的职业生涯。
持续学习是你的自我激励和坚持不懈的方式,以扩大你的技能和发展未来的机会,无论是个人还是专业。你可以决定有一天你对医学感兴趣,并想在该领域结合你的数据科学技能。或者,您可能想成为一名高级数据科学家,但意识到自己缺乏SQL知识。
学习永不停息。总是对自己说“我什么都不知道”;它给了你继续学习之旅的决心。知识唾手可得,如果你不利用它,你就会停留在原地。
能够谦逊自己,推动自己不断学习,这将帮助你提升自己的形象,保持相关性,为自己打开新的大门,并为意想不到的事情做好准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05