京公网安备 11010802034615号
经营许可证编号:京B2-20210330
阅读这组围绕数据科学的幽默、有见地的名言,希望能照亮你的一天,让你开怀大笑!
分享2
作者:Rupa Mahanti,顾问
数据科学是一门广泛的学科,几乎涉及所有商业领域,从金融到公用事业,从制造业到医疗保健和生命科学。数据科学是当前数字世界和时代中最流行的流行语之一。然而,围绕这个词有很多混淆,不同的人以不同的方式定义这个词。以下是围绕数据科学定义的一些幽默、有见地的名言,希望能照亮你的一天,并让你发笑。
"数据科学的第一条规则是:不要问如何定义数据科学。"
-Josh Bloom(Azam 2014)
"关于数据科学。它是这些跨学科、非学科的空间之一,人们以有趣的方式完成东西,但甚至不知道自己该怎么称呼它。"
-Cathryn Carson (Azam 2014)
"定义数据科学就像定义互联网一样,问10个人,你会得到10个不同的答案。"
-Micaela S. Parker, Arlyn E. Burgess, and Philip E. Bourne (Parker et al. 2021)
"数据科学不过是新瓶装旧酒的统计学版本,有不同的领域。"
-兰迪-巴特利(Bartlett 2015年)
"'数据科学'这个实际的术语是那种既意味着一切又意味着什么的术语。"
-尼克-亚当斯(Azan 2014)
"数据科学就是基于你所拥有的数据--或者往往是你所没有的数据,提出有趣的问题。"
-萨拉-贾维斯(达莫迪2020年)
"'数据科学'被定义为'数据科学家'所做的事情"。
-Harlan D. Harris (Harris 2011)
"数据科学是数据的土木工程"。
-Cathy O'Neil和Rachel Schutt(O'Neil和Schutt 2013年)
"数据科学有一个奇怪的特点,就是它是少数几个让从业者没有领域的研究领域之一。"
-Mikhail Mew(Mew 2021年)
"数据科学是使数据有用的科学。"
-Cassie Kozykorv (Kozykorv 2018)
"数据科学不是关于数据的数量,而是关于质量。"
-Joo Ann Lee (Coresignal 2021)
"数据科学的座右铭:如果一开始不成功;就叫它1.0版本。"
-Pranay Pathole
"数据科学很像烹饪。虽然一开始原材料可能很吸引人,但直到你真正能够开始切片、切块,并最终端出美味的东西来吞食,乐趣才会开始。大多数时候,你最终会得到一道菜,但在数据科学领域,我们称之为数据洞察力"。
-理查德-科内利斯-苏万迪(苏万迪2020年)
"数据科学80%是准备数据,20%是抱怨准备数据。"
-理查德-科内利斯-苏万迪(苏万迪2020年)
"数据科学是艺术和科学的结合,只受限于赋予数据科学家探索的自由度加上他们的创造能力。"
-Ken Poirot
"数据科学,正如它所实践的那样,是一种融合了以红牛为燃料的黑客技术和以浓咖啡为灵感的统计学。"
-迈克-德里斯科尔
"数据科学不仅仅是统计学,因为当统计学家完成了对完美模型的理论研究后,如果他们的工作取决于R的话,很少有人能把一个以表格为单位的文件读成R。"
-迈克-德里斯科尔(O'Neil和Schutt,2013)。
"数据科学。拓展统计学领域技术领域的行动计划"。
-William Cleaveland (Cleaveland 2001)
"学习数据科学就像去健身房,只有坚持不懈地做,你才会受益。"
-Moez Ali (Suwandi, 2022)
"很多人认为数据科学是一项工作,但更准确的是把它看成是一种思维方式,一种通过科学方法提取见解的手段。"
-Thilo Huellmann (Coresignal 2021)
笑声的确是最好的良药,数据专业人员的生活中当然需要更多的幽默感。下次你打算在数据领域进行演讲或展示时,如果你以一些有趣或古怪的数据引言开始,以激发你的同事和客户的兴趣,那将是非常好的。它们不仅能缓和气氛,而且还能给出一个没有人会认为如此有用的建议,因为它们是搞笑的。为了享受更多这样的引言,请获得这本书--《数据幽默》。有趣的数据、大数据、统计学和数据科学名言、双关语和短语。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05