京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
大家好,我是俊欣
刚过完春节,相信对于那些正处于适婚年龄的年轻人来说,步入婚姻的殿堂“彩礼”总是一个绕不过去的话题。就在昨天,B站一宠物博主发视频称“没有50W彩礼,女朋友被家人强行拖走”的消息登上了热搜。
从放出的视频中我们可以看得出来该女友被人在地上拖拽并殴打后,塞进了车里。男方追上去也被殴打。博主称已买房并写了女友的名字,但仍遭到其家人强烈反对。对此,律师表示:如属实,父母涉嫌暴力干涉他人婚姻自由,如情节严重可能涉嫌犯罪,可处2年以下有期徒刑或拘役。
今天小编就通过Python来分析一下全国各地的彩礼情况,以及全国各个地方结婚的成本到底如何?!
就在前年腾讯新闻谷雨数据发起了《2020年国人彩礼调查》,根据调查显示,有超过七成(73.8%)的婚姻都收过彩礼,其中山东则以接近九成(86.6%)的比例成为最流行送彩礼的省份,河北与广东两省紧随其后,具体看下图
c = (
Bar()
.add_xaxis(['山东', '河北', '广东', '安徽', '甘肃', '山西', '陕西', "河南", "江西", "福建"])
.add_yaxis("省份", [])
.set_global_opts(
title_opts=opts.TitleOpts(title="已婚族送或收过彩礼比例(%)"),
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} %"),
min_=70, max_=90),
)
.render("bar_yaxis_formatter.html")
)
output
但是面对彩礼,男女双方的态度差异大。调查显示,60.9%的女性认为彩礼的金额多少是十分重要的,这毕竟体现出男方的诚意。但只有15%的男性认为彩礼的金额很重要。而针对彩礼的金额范围,男性倾向的范围是1-5万元,而女性则更加偏好5-10万元
bar = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
.add_xaxis(majors)
.add_yaxis("男性比例(%)", num_1)
.add_yaxis("女性比例(%)", num_2)
.set_global_opts(title_opts=opts.TitleOpts(title="你认为最合理的彩礼礼金范围是多少"),
legend_opts=opts.LegendOpts(orient="vertical", pos_right="5%"),
yaxis_opts=opts.AxisOpts(min_= 0, max_=50),
xaxis_opts=opts.AxisOpts(axislabel_opts={"rotate":30})
)
)
bar.render("companies.html")
output
调查显示,全国彩礼礼金平均值为6.9万,而2021年全国居民人均可支配收入为3.51万元,这也就意味着一般人需要拿出一年可适配收入的2倍以上来支付彩礼礼金。不同地区的彩礼礼金不同,其中浙江、福建等地的彩礼金额偏高,当然东南沿海地区的经济本来也就相对比较发达,但是黑龙江和江西两省彩礼金额高就有点让人匪夷所思了
c = (
Map()
.add("", [list(z) for z in zip(provinces, values)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="全国各地彩礼礼金对比"),
visualmap_opts=opts.VisualMapOpts(max_=20, min_=0,
is_piecewise=True)
)
).render(path="彩礼礼金.html")
output
彩礼压力最小的是上海、广东、重庆、北京、海南等地,用一年的可支配收入就足以支付彩礼礼金了。
说完了彩礼,还有举办婚礼的费用,毕竟这也是一项实实在在的开支。一场婚礼的全部费用包括婚礼用品的准备、婚礼现场布置、婚庆公司、婚礼化妆师、婚礼摄像师、婚礼主持等费用,由于地区经济发展水平不同,所以各地婚礼费用也是不同的,例如在北京结婚的费用:
综上总计:20+10+12+4+2+4.8=52.8W
也就是说不算上买房,买房的首付由父母出的话,男性以及他的家庭所要背负的结婚的成本也是相当高昂的。
从婚庆花销的各个组成来看,婚宴与婚礼服务公司的费用占到了前两个大头,如下图所示
p = (
Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", [list(z) for z in zip(cate, nums)],
radius=["35%", "58%"],
center=["58%", "42%"])
.set_global_opts(title_opts=opts.TitleOpts(title="花费分布", pos_left="40%"),
legend_opts=opts.LegendOpts(orient="vertical",
pos_top="15%",
pos_left="10%"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}%"))
)
p.render("marrige_dist.html")
output
而总的花费在5W-10W、10W-20W为主,当然也有不少新人的婚礼总的花销会有20W甚至是30W以上的
p = (
Pie(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
.add("", [list(z) for z in zip(cate_1, nums_1)],
radius=["35%", "58%"],
center=["58%", "42%"])
.set_global_opts(title_opts=opts.TitleOpts(title="婚礼花费(包含婚宴)", pos_left="40%"),
legend_opts=opts.LegendOpts(orient="vertical",
pos_top="15%",
pos_left="10%"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}%"))
)
p.render("marrige_consume_dist.html")
output
正是因为结一次婚非常的费钱,因此随之而来也有了许多省钱的攻略,例如38%的新人认为婚房布置是最省钱的地方,其次便是跟妆婚车、礼服以及戒指等细节处
彩礼和嫁妆应该是作为一个新婚家庭更好生活与发展的启动资金,而不是某一方家庭为了私利谋取财物的一种手段,不是一方家庭借以结婚为由谋取财物的一种方式,再此小编真心的希望天底下所有的有情人都能够终成眷属,不会因为彩礼、嫁妆等因素而分手。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29