京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		作者:俊欣
来源:关于数据分析与可视化
也就在前天,南太平洋岛国汤加发生火山喷发,有专门的专家学者分析,这可能是30年来全球规模最大的一次海底火山喷发,它引发的海啸以及火山灰将对周边的大气、洋流、淡水、农业以及民众健康等都造成不同程度的影响。
今天小编就用Python当中的folium模块以及其他的可视化库来对全球的火山情况做一个分析。
和以往一样,我们先导入需要数据分析过程当中需要用到的模块并且读取数据集,本次的数据集来自由kaggle网站,主要由美国著名的史密森学会整理所得
import pandas as pd import folium.plugins as plugins import folium
df_volcano = pd.read_csv("volcano.csv")
df_volcano.head()
output
数据集包含了这些个数据
df_volcano.columns 
output
Index(['volcano_number', 'volcano_name', 'primary_volcano_type', 'last_eruption_year', 'country', 'region', 'subregion', 'latitude', 'longitude', 'elevation', 'tectonic_settings', 'evidence_category', 'major_rock_1', 'major_rock_2', 'major_rock_3', 'major_rock_4', 'major_rock_5', 'minor_rock_1', 'minor_rock_2', 'minor_rock_3', 'minor_rock_4', 'minor_rock_5', 'population_within_5_km', 'population_within_10_km', 'population_within_30_km', 'population_within_100_km'],
      dtype='object')
我们通过调用folium模块来绘制一下全球各个火山的分布,代码如下
volcano_map = folium.Map() # 将每一行火山的数据添加进来 for i in range(0, df_volcano.shape[0]):
    volcano = df_volcano.iloc[i]
    folium.Marker([volcano['latitude'], volcano['longitude']], popup=volcano['volcano_name']).add_to(volcano_map)
volcano_map
output
上述代码的逻辑大致来看就是先实例化一个Map()对象,然后遍历每一行的数据,主要针对的是数据集当中的经纬度数据,并且在地图上打上标签,我们点击每一个标签都会自动弹出对应的火山的名称
当然出来的可视化结果不怎么美观,我们先通过简单的直方图来看一下全球火山的分布情况,代码如下
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))
volcano_country = pd.DataFrame(df_volcano.groupby(['country']).size()).sort_values(0, ascending=True)
volcano_country.columns = ['Count']
volcano_country.tail(10).plot(kind='barh', legend=False, ax=ax1)
ax1.set_title('Number of Volcanoes per Country')
ax1.set_ylabel('Country')
ax1.set_xlabel('Count')
volcano_region = pd.DataFrame(df_volcano.groupby(['region']).size()).sort_values(0, ascending=True)
volcano_region.columns = ['Count']
volcano_region.tail(10).plot(kind='barh', legend=False, ax=ax2)
ax2.set_title('Number of Volcanoes per Region')
ax2.set_ylabel('Region')
ax2.set_xlabel('Count')
plt.tight_layout()
plt.show()
output
可以看到火山主要集中在美国、印度尼西亚以及日本较多,而单从地域来看,南美以及日本、中国台湾和印度尼西亚等地存在着较多的火山
接下来我们来优化一下之前绘制的全球火山分布的地图,调用folium模块当中CircleMarker方法,并且设定好标记的颜色与大小
volcano_map = folium.Map(zoom_start=10)
groups = folium.FeatureGroup('') # 将每一行火山的数据添加进来 for i in range(0, df_volcano.shape[0]):
    volcano = df_volcano.iloc[i]
    groups.add_child(folium.CircleMarker([volcano['latitude'], volcano['longitude']],
                                         popup=volcano['volcano_name'], radius=3, color='blue',
                                         fill=True, fill_color='blue',fill_opacity=0.8))
    
volcano_map.add_child(groups)
volcano_map.add_child(folium.LatLngPopup())
output
然后我们来看一下这次火山的爆发地点,汤加共和国位于西南太平洋,属于大洋洲,具体位置是在西经175°和南纬20°左右,
import folium.plugins as plugins import folium m = folium.Map([-21.178986, -175.198242], zoom_start=10, control_scale=True, width='80%') m 
output
第一个参数非常明显代表的是经纬度,而zoom_start参数代表的是缩放的程度,要是我们需要进一步放大绘制的图表,可以通过调整这个参数来实现,而width参数代表的则是最后图表绘制出来的宽度。
我们也可以在绘制出来的地图上面打上标记,例如画个圆圈,代码如下
m = folium.Map([-21.178986, -175.198242], zoom_start=12, control_scale=True, width='80%') folium.Circle(location = [-21.177986, -175.199242], radius = 1500, color = "purple").add_to(m) m 
output
或者给圈出来的区域标上颜色,代码如下
m = folium.Map([-21.178986, -175.198242],
               zoom_start=12,
               control_scale=True, width='80%')
folium.Circle(location = [-21.177986, -175.199242], radius = 1500,
              color = "purple", fill = True, fill_color = "red").add_to(m)
m
output
本次汤加火山爆发的VEI强度为5-6级,属于本世纪以来最强等级,后面连带引发的海啸影响了太平洋沿岸地区。太平洋沿岸的智利、日本等国的潮位站监测到30厘米至150厘米的海啸波,我国潮位站最大海啸波幅在20厘米以下,短期内太平洋沿岸国际航运或受到影响,需要重点关注美豆到港情况。
而从长期来看,热带火山爆发或提高全球极端天气发生概率,从而影响农作物的生长,对整个农产品的供应造成深远的影响,而如果火山灰大面积扩散,或进一步影响全球航空业,降低运输效率,拖累全球供应链。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28