京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当下企业数字化转型正快速发展,在越来越严苛的外部监管及越来越激烈的市场竞争驱动下,各行各业都在急迫地对数据进行最大化的价值挖掘。然而,大多数企业在推动落地时,都会遇到诸多问题。快速了解“数据从治理到分析”的落地流程与产出效果,以最低成本实现团队协同,快速解决深奥数据问题,成为越来越多企业加大数字化转型投入的核心动力。
CDA数据分析师
CDA数据分析师作为专注于数字化人才培养及服务的教育品牌, 一直致力于大数据在产、学、 研的融合应用。以“培养企业需要的专业数字化人才, 搭建引领数字化时代的企业人才梯队” 为使命, 为DT时代数字化人才的数据能力提升及企业数字化转型提供标准化、 高效率、 可落地的数据应用侧解决方案。成立15年来, 始终在总结凝练先进数字化商业数据策略及技术应用实践, 以实际行动提升了数字化人才的职业素养与能力水平, 以建设高质量生态圈层促进了行业的持续快速发展。
华矩九宫格数据·数据治理体验店
作为国内领先的数据治理和数据质量技术与服务提供商,华矩科技一直致力于数据使用的安全可靠、快捷、便利、智能与低成本,使数据成为核心资产。在此背景下,华矩科技全国首次推出九宫格数据治理体验店。作为国内领先的数据治理与数据质量技术与服务提供商,华矩科技一直致力于数据使用的安全可靠、快捷、便利、智能与低成本,使数据成为核心资产。而华矩九宫格数据治理线下体验店的推出,既是华矩九宫格数据治理SaaS服务的延伸,也是华矩数据治理实验室的一部分, 涵盖技术、业务、管理等贯穿数据治理各个环节的场景体验,旨在让技术平民化,让理念落地化,让流程简单化,让对数据治理技术有应用需求的企业或有学习需求的个人可以通过体验店的模式,快速了解数据治理的细分流程与“快准省”的技术优势。截止目前,已在广州、深圳开设分店。
CDA九宫格数据&华矩·数据治理与分析体验店
此次,华矩九宫格数据治理体验店携手数据分析及数字化人才服务领域的领头羊——CDA数据分析师,以数据治理与数据分析为特色,联合开设九宫格数据体验店北京分店并对外运营。在12月28日-30日第五届数据质量管理国际峰会直播现场,将正式发布该体验店的详情内容。
扫码预约直播,了解发布详情
九宫格数据·数据治理与分析体验店,聚焦用户在数据治理与分析方面的理论培训与技术习得体验需求,让数据治理与数据分析应用无缝衔接,颠覆传统的技术应用流程,不仅可以直观感受数据价值、体验场景化的模拟实验,而且针对于个人及企业开通专业顾问咨询辅导服务,进行项目前期团队实操,利用模拟真实的测试数据进行模拟-练习-创新的体验,达到快速解决数据问题,端到端全流程实验、技术业务快速协同的效果,使用户可以真正地理解并掌握数据治理与数据分析全流程技能,了解并协同各环节的关系,从而可以真正用到自己的工作中或为团队项目实施做好前期准备。
图-CDA&华矩联合的九宫格数据·数据治理与分析体验店
体验内容
在数据治理与分析体验店,您可以从技术、业务、管理三大方面全方位体验数据治理与分析。
而CDA数据分析师与华矩科技的强强联合,也赋予了数据治理与分析体验店更多特色体验,主要包括:
体验店的亮点优势
区别于以往很重的数据治理咨询与实施,华矩科技首创的九宫格数据体验店模式让用户可以更轻更快地了解与体验数据治理,并在体验店获得场景模拟,团队协同和报告输出。主要包括:
开放免费体验科目
新店试业期间,九宫格数据·数据治理与分析体验店数个技术场景科目免费体验,从数据预处理、数据探查与诊断、数据清洗规则与标准化设计、数据集成、数据优化、数据质量监控到数据分析和数据挖掘等全流程场景,了解数据从产生到处理到应用的相关逻辑与实操路径,实现一个闭环体验并赋能个人技能习得或团队项目预演。
体验预约须知
1. 体验店开放地点
广州店:广州市天河区体育东路122号羊城商贸中心西塔1010
深圳店:深圳市福田区新闻路华丰大厦303
北京店:北京市海淀区高梁桥斜街59号院1号楼13层1306
2. 体验店开放时间
周一至周五 9:00-18:00
3. 体验预约流程
填写预约申请表单——后台审核体验资格——沟通确认体验时间地点——上门体验
4. 体验内容说明
每个场景科目均包含高级顾问辅导与自由实操环节,以确保用户了解操作方法并能自主操作获得结果。如需更多操作原理与数据治理与分析理论方法,敬请关注体验店后续推出的培训课程。
5. 温馨提示
新店开业期间针对既定科目场景开放免费体验,限时限量,请尽快预约体验。
不同科目体验涉及不同时长,敬请注意体验期间差旅住宿餐饮等费用需自理。
*该活动最终解释权归九宫格数据·数据治理与分析体验店所有。
码上预约体验,开启不一样的数据治理之旅
更多关于数据治理与分析体验店内容,将在12月28日-30日第五届数据质量管理国际峰会上发布,敬请期待!
扫码预约直播,了解发布详情
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24