京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:某某白米饭
来源:Python 技术
在写算法的时候,总是要每行每个变量一个个的 debug,有时候还要多写几个 print,一道算法题要花好长时间才能理解。pysnooper 模块可以把在运行中变量值都给打印出来。
pip3 install pysnooper
下面是道简单的力扣算法题作为一个简单的例子
import pysnooper @pysnooper.snoop() def longestCommonPrefix(strs): res = '' for i in zip(*strs):
print(i) if len(set(i)) == 1:
res += i[0] else break return res if __name__ == 'main':
longestCommonPrefix(["flower","flow","flight"])
结果:
3:38:25.863579 call 4 def longestCommonPrefix(strs): 23:38:25.864474 line 5 res = '' New var:....... res = '' 23:38:25.864474 line 6 for i in zip(*strs): New var:....... i = ('f', 'f', 'f') 23:38:25.865479 line 7 print(i)
('f', 'f', 'f') 23:38:25.866471 line 8 if len(set(i))==1: 23:38:25.866471 line 9 res+=i[0]
Modified var:.. res = 'f' 23:38:25.866471 line 6 for i in zip(*strs):
Modified var:.. i = ('l', 'l', 'l') 23:38:25.866471 line 7 print(i)
('l', 'l', 'l') 23:38:25.867468 line 8 if len(set(i))==1: 23:38:25.867468 line 9 res+=i[0]
Modified var:.. res = 'fl' 23:38:25.868476 line 6 for i in zip(*strs):
Modified var:.. i = ('o', 'o', 'i') 23:38:25.868476 line 7 print(i)
('o', 'o', 'i') 23:38:25.869463 line 8 if len(set(i))==1: 23:38:25.869463 line 11 break 23:38:25.869463 line 12 return res 23:38:25.869463 return 12 return res Return value:.. 'fl' Elapsed time: 00:00:00.008201
我们可以看到 pysnooper 把整个执行程序都记录了下来,其中包括行号, 行内容,变量的结果等情况,我们很容易的就看懂了这个算法的真实情况。并且不需要再使用 debug 和 print 调试代码。很是省时省力,只需要在方法上面加一行 @pysnooper.snoop()。
pysnooper 包含了多个参数,一起来看看吧
output 默认输出到控制台,设置后输出到文件,在服务器中运行的时候,特定的时间出现代码问题就很容易定位错误了,不然容易抓瞎。小编在实际中已经被这种问题困扰了好几次,每次都掉好多头发。
@pysnooper.snoop('D:pysnooper.log') def longestCommonPrefix(strs):
示例结果:
watch 用来设置跟踪的非局部变量,watch_explode 表示设置的变量都不监控,只监控没设置的变量,正好和 watch 相反。
index = 1 @pysnooper.snoop(watch=('index')) def longestCommonPrefix(strs):
示例结果
没有加 watch 参数
Starting var:.. strs = ['flower', 'flow', 'flight'] 00:12:33.715367 call 5 def longestCommonPrefix(strs):
00:12:33.717324 line 7 res = '' New var:....... res = ''
加了watch 参数,就会有一个 Starting var:.. index
Starting var:.. strs = ['flower', 'flow', 'flight']
Starting var:.. index = 1 00:10:35.151036 call 5 def longestCommonPrefix(strs):
00:10:35.151288 line 7 res = '' New var:....... res = ''
depth 监控函数的深度
@pysnooper.snoop(depth=2) def longestCommonPrefix(strs): otherMethod()
示例结果
Starting var:.. strs = ['flower', 'flow', 'flight'] 00:20:54.059803 call 5 def longestCommonPrefix(strs): 00:20:54.059803 line 6 otherMethod() 00:20:54.060785 call 16 def otherMethod(): 00:20:54.060785 line 17 x = 1 New var:....... x = 1 00:20:54.060785 line 18 x = x + 1 Modified var:.. x = 2 00:20:54.060785 return 18 x = x + 1 Return value:.. None 00:20:54.061782 line 7 res = ''
监控的结果显示,当监控到调用的函数的时候,记录上会加上缩进,并将它的局部变量和返回值打印处理。
prefix 输出内容的前缀
@pysnooper.snoop(prefix='-------------') def longestCommonPrefix(strs):
示例结果
-------------Starting var:.. strs = ['flower', 'flow', 'flight']
-------------00:39:13.986741 call 5 def longestCommonPrefix(strs): -------------00:39:13.987218 line 6 res = ''
relative_time 代码运行的时间
@pysnooper.snoop(relative_time=True) def longestCommonPrefix(strs):
示例结果
Starting var:.. strs = ['flower', 'flow', 'flight'] 00:00:00.000000 call 5 def longestCommonPrefix(strs):
00:00:00.001998 line 6 res = '' New var:....... res = '' 00:00:00.001998 line 7 for i in zip(*strs):
max_variable_length 输出的变量和异常的最大长度,默认是 100 个字符,超过 100 个字符就会被截断,可以设置为 max_variable_length=None 不截断输出
@pysnooper.snoop(max_variable_length=5) def longestCommonPrefix(strs):
示例结果
Starting var:.. strs = [...]
00:56:44.343639 call 5 def longestCommonPrefix(strs): 00:56:44.344696 line 6 res = '' New var:....... res = '' 00:56:44.344696 line 7 for i in zip(*strs): New var:....... i = (...)
本文介绍了怎么使用 pysnooper 工具,pysnooper 不仅可以少一些 debug 和 print,更能帮助理解算法题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05