京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
大家好,又是新的一周,也是2021年的最后一周,今天小编来和大家说一说怎么从DataFrame数据集中筛选符合指定条件的数据,希望会对读者朋友有所帮助。
我们先导入pandas模块,并且读取数据,代码如下
import pandas as pd
df = pd.read_csv("netflix_titles.csv")
df.head()
首先我们可以根据文本内容直接来筛选,返回的是True如果文本内容是相匹配的,False如果文本内容是不匹配的,代码如下
mask = df['type'].isin(['TV Show'])
mask.head()
output
0 False 1 True 2 True 3 True 4 True Name: type, dtype: bool
然后我们将这个mask作用到整个数据集当中,返回的则是满足与True条件的数据
df[mask].head()
output
当然我们也可以和.loc方法来相结合,只挑选少数的几个指定的列名,代码如下
df.loc[mask, ['title','country','duration']].head()
output
title country duration 1 Blood & Water South Africa 2 Seasons 2 Ganglands NaN 1 Season 3 Jailbirds New Orleans NaN 1 Season 4 Kota Factory India 2 Seasons 5 Midnight Mass NaN 1 Season
当然要是我们所要筛选的文本内容并不仅仅只有1个,就可以这么来操作,代码如下
mask = df['type'].isin(['Movie','TV Show'])
结果返回的是True,要是文本内容全部都匹配,要是出现一个不匹配的现象则返回的是False
我们可以根据某个关键字来筛选数据,数据集当中的listed-in包含的是每部电影的种类,当然很多电影并不只有一个种类,而是同时涉及到很多个种类,例如某一部电影既有“科幻”元素,也有“爱情”元素同时还包含了部分“动作片”的元素。
我们按照某个关键字来筛选,例如筛选出包含了“horror”这个关键字的影片,代码如下
mask = df['listed_in'].str.contains('horror', case=False, na=False)
其中的case=False表明的是忽略字母的大小写问题,na=False表明的是对于缺失值返回的是False,
df[mask].head()
output
而要是文本数据当中包含了一些特殊符号,例如+、^以及=等符号时,我们可以将regex参数设置成False(默认的是True),这样就不会被当做是正则表达式的符号,代码如下
df['a'].str.contains('^', regex=False)
#或者是 df['a'].str.contains('^')
当关键字不仅仅只有一个的时候,就可以这么来操作
pattern = 'horror|stand-up' mask = df['listed_in'].str.contains(pattern, case=False, na=False)
df[mask].sample(5)
output
我们用了|来表示“或”的意思,将电影类别包含“horror”或者是“stand-up”这两类的电影筛选出来
除此之外,我们还可以这么来做
mask1 = df['listed_in'].str.contains("horror", case=False)
mask2 = df['listed_in'].str.contains("stand-up", case=False)
df[mask1 | mask2].sample(5)
出来的结果和上述一样,只不过过程可能稍加繁琐,除了|表示的是“或”之外,也有表示的是和,也就是&标识符,意味着条件全部都需要满足即可,例如
mask1 = (df['listed_in'].str.contains('horror', case=False, na=False))
mask2 = (df['type'].isin(['TV Show']))
df[mask1 & mask2].head(3)
output
我们可以添加多个条件在其中,多个条件同时满足,例如
mask1 = df['rating'].str.contains('tv', case=False, na=False)
mask2 = df['listed_in'].str.contains('tv', case=False, na=False)
mask3 = df['type'].str.contains('tv', case=False, na=False)
df[mask1 & mask2 & mask3].head()
output
我们同时也可以将正则表达式应用在如下的数据筛选当中,例如str.contains('str1.*str2')代表的是文本数据是否以上面的顺序呈现,
pattern = 'states.*mexico' mask = data['country'].str.contains(pattern, case=False, na=False)
data[mask].head()
output
其中.*在正则表达式当中表示匹配除换行符之外的所有字符,我们需要筛选出来包含states以及mexico结尾的文本数据,我们再来看下面的例子
pattern = 'states.*mexico|mexico.*states' mask = data['country'].str.contains(pattern, case=False, na=False)
data[mask].head()
output
我们筛选出来的文本数据满足两个条件当中的一个即可
有一些筛选数据的方式可能稍显复杂,因此需要lambda方法的介入,例如
cols_to_check = ['rating','listed_in','type']
pattern = 'tv' mask = data[cols_to_check].apply(
lambda col:col.str.contains(
pattern, na=False, case=False)).all(axis=1)
我们需要在rating、listed_in以及type这三列当中筛选出包含tv的数据,我们来看一下结果如何
df[mask].head()
output
我们再来看下面的这个例子,
mask = df.apply(
lambda x: str(x['director']) in str(x['cast']),
axis=1)
上面的例子当中是来查看director这一列是否被包含在了cast这一列当中,结果如下
df[mask].head()
output
我们还可以通过filter方法来筛选文本的数据,例如筛选出列名包含in的数据,代码如下
df.filter(like='in', axis=1).head(5)
output
当然我们也可以用.loc方法来实现,代码如下
df.loc[:, df.columns.str.contains('in')]
出来的结果和上述的一样
要是我们将axis改成0,就意味着是针对行方向的,例如筛选出行索引中包含Love的影片,代码如下
df_1 = df.set_index('title')
df_1.filter(like='Love', axis=0).head(5)
output
当然我们也可以通过.loc方法来实现,代码如下
df_1.loc[df_1.index.str.contains('Love'), :].head()
我们可以使用query方法,例如我们筛选出国家是韩国的影片
df.query('country == "South Korea"').head(5)
output
例如筛选出影片的添加时间是11月的,代码如下
mask = df["date_added"].str.startswith("Nov")
df[mask].head()
output
那既然用到了startswith方法,那么就会有endswith方法,例如
df['col_name'].str.endswith('2019')
除此之外还有这些方法可以用来筛选文本数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27