京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:星安果
来源:AirPython
大家好,我是安果!
最近打算做一批日历给亲朋好友,但是从 iPhone上导出的照片格式是 HEIC 格式,而商家的在线制作网站不支持这种图片格式
PS:HEIC 是苹果采用的新的默认图片格式,它能在不损失图片画质的情况下,减少图片大小
有很多在线网站支持图片批量转换,但是安全隐私又没法得到保证;如果使用 PS 等软件去一张张转换,浪费时间的同时效率太低
本篇文章将使用 Python 批量实现 HEIC 图片文件的格式转换
首先,我们安装 pyheif 依赖包
Linux 和 Mac OS 可以通过下面链接选择合适的方式进行安装
https://pypi.org/project/pyheif/
如果是 Windows,我们只能下载 whl 依赖文件,使用 pip 命令进行安装
注意:我们需要根据系统及Python 版本选择对应的文件进行安装
# 比如,本机是win10+64位 + Python3.7
# 通过下面链接下载文件:pyheif‑0.6.1‑cp37‑cp37m‑win_amd64.whl
https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyheif
# 然后进行虚拟环境
# 使用pip3命令安装whl文件
pip3 install pyheif‑0.6.1‑cp37‑cp37m‑win_amd64.whl
然后,安装 PIL 依赖,用于图片处理
# 安装依赖
pip3 install Pillow
首先,遍历源文件夹及子文件夹,获取所有 HEIC 格式(不区分大小写)的图片
import pathlib
import os
def get_all_heic_imgs():
"""
获取所有heic格式的图片
:return:
"""
# heif_image_paths = glob.glob(r"{}/*.heic".format(source_path))
# 满足条件的文件列表
filelist = []
for root, dirnames, filenames in os.walk(source_path):
for filename in filenames:
# filename:文件名、root:文件对应的目录
# 获取文件后缀名
file_end = pathlib.Path(filename).suffix
# 文件名(不带后缀)
file_name = pathlib.Path(filename).name.split(".")[-2]
if file_end in ['.heic', '.HEIC']:
# 文件的完整目录
# file_path = os.path.join(root, filename)
filelist.append({
"filename": file_name,
"filepath": os.path.join(root, filename)
})
return filelist
然后,遍历文件列表,使用 pyheif 读取文件,使用PIL 转为二进制图片,以JPG 格式保存到目标文件夹下
import pyheif
from PIL import Image
# 读取文件
img = pyheif.read(filepath)
img_bytes = Image.frombytes(mode=img.mode, size=img.size, data=img.data)
# 文件保存完整目录
target_file_path = '{}/{}_{}.jpg'.format(target_path, filename, generate_random_num(6))
# 保存
img_bytes.save(target_file_path, format="jpeg")
由于图片数目很多,图片读取、图片保存都是耗时的 IO 操作,最后对程序进行改造,利用多线程加快图片转换
另外,图片可能会存在文件名重名,最后保存的文件名追加了一个随机的字符串
import threading
def generate_random_num(count):
"""
产生一段随机的字符串
:param count:
:return:
"""
return ''.join(random.sample('abcdefghijklmnopqrstuvwxyz', count))
def convert_heic_to_jpg(file, semaphore):
"""
heic格式转jpg
:param files:
:return:
"""
semaphore.acquire()
...
#文件操作
# 释放
semaphore.release()
if __name__ == '__main__':
...
# 定义信号量,并发处理文件IO
semaphore = threading.BoundedSemaphore(20)
for file in files:
t = threading.Thread(target=convert_heic_to_jpg, args=(file, semaphore))
t.start()
通过上面的操作就可以快速将 HEIC 文件批量转换为 JPG 文件,当然如果想转为其他图片,比如:PNG,只需要更改 PIL 保存图片的格式即可
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05