
作者:俊欣
来源:关于数据分析与可视化
大家好,又是新的一周。大家一般会用Pandas模块来对数据集进行进一步的分析与挖掘关键信息,但是当我们遇到数据集特别特别大的时候,内存就会爆掉,今天小编就来分享几个技巧,来帮助你避免遇到上述提到的这个情况。
read_csv()方法当中的chunksize参数顾名思义就是对于超大csv文件,我们可以分块来进行读取,例如文件当中有7000万行的数据,我们将chunksize参数设置为100万,每次分100万来分批读取,代码如下
# read the large csv file with specified chunksize df_chunk = pd.read_csv(r'data.csv', chunksize=1000000)
这时我们得到的df_chunk并非是一个DataFrame对象,而是一个可迭代的对象。接下来我们使用for循环并且将自己创立数据预处理的函数方法作用于每块的DataFrame数据集上面,代码如下
chunk_list = [] # 创建一个列表chunk_list # for循环遍历df_chunk当中的每一个DataFrame对象 for chunk in df_chunk: # 将自己创建的数据预处理的方法作用于每个DataFrame对象上 chunk_filter = chunk_preprocessing(chunk) # 将处理过后的结果append到上面建立的空列表当中 chunk_list.append(chunk_filter) # 然后将列表concat到一块儿 df_concat = pd.concat(chunk_list)
当然我们还可以进一步将不重要的列都给去除掉,例如某一列当中存在较大比例的空值,那么我们就可以将该列去除掉,代码如下
# Filter out unimportant columns df = df[['col_1','col_2', 'col_3', 'col_4', 'col_5', 'col_6','col_7', 'col_8', 'col_9', 'col_10']]
当然我们要去除掉空值可以调用df.dropna()方法,一般也可以提高数据的准确性以及减少内存的消耗
最后我们可以通过改变数据类型来压缩内存空间,一般情况下,Pandas模块会给数据列自动设置默认的数据类型,很多数据类型里面还有子类型,而这些子类型可以用更加少的字节数来表示,下表给出了各子类型所占的字节数
对于内存当中的数据,我们可以这么来理解,内存相当于是仓库,而数据则相当于是货物,货物在入仓库之前呢需要将其装入箱子当中,现在有着大、中、小三种箱子,
现在Pandas在读取数据的时候是将这些数据无论其类型,都是装到大箱子当中去,因此会在很快的时间里仓库也就是内存就满了。
因此我们优化的思路就在于是遍历每一列,然后找出该列的最大值与最小值,我们将这些最大最小值与子类型当中的最大最小值去做比较,挑选字节数最小的子类型。
我们举个例子,Pandas默认是int64类型的某一列最大值与最小值分别是0和100,而int8类型是可以存储数值在-128~127之间的,因此我们可以将该列从int64类型转换成int8类型,也就同时节省了不少内存的空间。
我们将上面的思路整理成代码,就是如下所示
def reduce_mem_usage(df): """ 遍历DataFrame数据集中的每列数据集 并且更改它们的数据类型 """ start_memory = df.memory_usage().sum() / 1024**2 print('DataFrame所占用的数据集有: {:.2f} MB'.format(start_memory)) for col in df.columns: col_type = df[col].dtype if col_type != object: col_min = df[col].min() col_max = df[col].max() if str(col_type)[:3] == 'int': if col_min > np.iinfo(np.int8).min and col_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif col_min > np.iinfo(np.int16).min and col_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif col_min > np.iinfo(np.int32).min and col_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif col_min > np.iinfo(np.int64).min and col_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if col_min > np.finfo(np.float16).min and col_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif col_min > np.finfo(np.float32).min and col_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_memory = df.memory_usage().sum() / 1024**2 print('优化过之后数据集的内存占有: {:.2f} MB'.format(end_memory)) print('减少了大约有: {:.1f}%'.format(100 * (start_memory - end_memory) / start_memory)) return df
大家可以将小编写的这个函数方法拿去尝试一番,看一下效果如何!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26