
作者:俊欣
来源:关于数据分析与可视化
一般提及数据可视化,会Python的读者朋友可能第一时间想到的就是matplotlib模块或者是seaborn模块,而谈及绘制动态图表,大家想到的比较多的是Plotly或者是echarts/' style='color:#000;font-size:inherit;'>Pyecharts。
今天小编来为大家介绍另外一个绘制动态图表的模块,使用起来也是非常的便捷,而且绘制出来的图表也是十分的精湛好看,它叫pygal,相比较seaborn等常用的模块相比,该模块的优点有:
因此,pygal模块小编以为还是值得拿出来讲讲的,我们大致会说这些内容:
模块的安装十分的简单,通过pip install就能够实现,
pip install pygal
当然国内的小伙伴要是觉得下载的速度慢,也可以通过加入第三方的镜像来提速
pip install -i http://pypi.douban.com/simple/ pygal
view = pygal.Bar() #图表名 view.title = '柱状图' #添加数据 view.add('数据', [1,3,5,7,9,11]) #在浏览器中查看 #view.render_in_browser() view.render_to_file('bar.svg')
output
我们既可以通过render_to_file()方法来导出成文件,也可以通过render_in_browser()方法在浏览器中查看
我们再来看多列柱状图的绘制,代码如下
view.add('奇数', [1,3,5,7,9,11])
view.add('偶数', [2,4,6,8,10,12])
output
要是我们想将柱状图横过来看,将上述代码当中的一小部分替换成
view = pygal.HorizontalBar()
output
而要是我们想要堆叠形式的柱状图,则需要将上述代码当中的一小部分替换成
view = pygal.HorizontalStackedBar()
output
对于折线图的绘制,其实与上面柱状图的绘制基本一致,我们直接来看代码
view = pygal.Line() #图表名 view.title = '折线图' #添加数据 view.add('奇数', [1,3,5,7,9,11])
view.add('偶数', [2,4,6,8,10,12]) #在浏览器中查看 view.render_in_browser()
output
也和上面柱状图的代码逻辑保持一致,折线图中也有堆叠式的折线图,只需要将上面的代码当中的一部分替换成
view = pygal.StackedLine(fill=True)
同样,饼图的绘制也是相似的代码逻辑
view = pygal.Pie() #图表名 view.title = '饼状图' #添加数据 view.add('A', 23)
view.add('B', 40)
view.add('C', 15)
view.render_to_file('pie.svg')
output
同时我们也可以绘制圆环图,在饼图的中心掏空出来一块,代码大致相同,只是需要将上面的一小部分替换成
#设置空心圆半径 view = pygal.Pie(inner_radius=0.4)
output
当我们每个类当中不止只有一个数字的时候,可以绘制多级饼图,代码如下
view = pygal.Pie() #图表名 view.title = '多级饼图' #添加数据 view.add('A', [20, 25, 30, 45]) view.add('B', [15, 19, 25, 50]) view.add('C', [18, 22, 28, 35]) view.render_to_file('pie_multi.svg')
output
雷达图可以帮我们从多个维度来分析数据,例如我们分析运动员的运动能力的时候,就会从多个维度来综合看待,这个时候雷达图就变得非常有用,代码如下
radar_chart = pygal.Radar()
radar_chart.title = 'NBA 各球员能力比拼' radar_chart.x_labels = ['得分', '防守', '助攻', '失误', '篮板']
radar_chart.add('库里', [70, 98, 96, 85, 97])
radar_chart.add('詹姆斯', [60, 95, 50, 75, 99])
radar_chart.add('杜兰特', [94, 45, 88, 91, 98])
radar_chart.render_to_file('radar_nba.svg')
output
当然上面的数据都是瞎编的,喜欢NBA的读者朋友或者是喜欢上面几个球形的读者朋友看了可别喷我哦
箱型图可以快速地帮我们了解数据的分布,查看是否存在极值。在pygal模块当中也提供了绘制箱型图的方法,代码如下
box_plot = pygal.Box() box_plot.title = '各浏览器的使用量' box_plot.add('Chrome', [6395, 8212, 7520, 7218, 12464, 1660, 2123, 8607]) box_plot.add('Firefox', [7512, 8099, 11700, 2651, 6361, 1044, 8502, 9450]) box_plot.add('360安全卫士', [3472, 2933, 4203, 5510, 5810, 1828, 9013, 4669]) box_plot.add('Edge', [4310, 4109, 5935, 7902, 14404, 13608, 34004, 10210]) box_plot.render_to_file("box.svg")
output
仪表盘可以帮助我们量化指标的好坏,代码如下
gauge_chart = pygal.Gauge(human_readable=True)
gauge_chart.title = '不同浏览器的性能差异' gauge_chart.range = [0, 10000]
gauge_chart.add('Chrome', 8212)
gauge_chart.add('Firefox', 8099)
gauge_chart.add('360安全卫士', 2933)
gauge_chart.add('Edge', 2530)
gauge_chart.render_to_file('gauge_1.svg')
output
热力图可以更加直观的观测每个区域当中数据的分布,代码如下
treemap = pygal.Treemap() treemap.title = 'Binary TreeMap' treemap.add('A', [12, 15, 12, 40, 2, 10, 10, 13, 12, 13, 40, None, 19]) treemap.add('B', [4, 2, 5, 10, 30, 4, 2, 7, 4, -10, None, 8, 30, 10]) treemap.add('C', [3, 8, 3, 3, 5, 15, 3, 5, 4, 12]) treemap.add('D', [23, 18]) treemap.add('E', [11, 2, 1, 12, 3, 13, 1, 2, 13, 14, 3, 1, 2, 10, 1, 10, 12, 1]) treemap.add('F', [31]) treemap.add('G', [15, 9.3, 8.1, 12, 4, 34, 2]) treemap.add('H', [12, 13, 3]) treemap.render_in_browser()
output
首先我们来看世界地图的绘制,在这之前,我们还要下载绘制整个世界地图所需要的插件
pip install pygal_maps_world
代码如下
worldmap_chart = pygal.maps.world.World()
worldmap_chart.title = 'Some countries' worldmap_chart.add('A countries', ['国家名称的缩写'])
worldmap_chart.add('B countries', ['国家名称的缩写'])
worldmap_chart.add('C countries', ['国家名称的缩写'])
worldmap_chart.render_in_browser()
output
我们也可以针对不同国家的计数来进行地图的绘制,例如不同国家重大疾病的死亡人数,代码如下
worldmap_chart = pygal.maps.world.World()
worldmap_chart.title = 'Minimum deaths by capital punishement (source: Amnesty International)' worldmap_chart.add('In 2012', { '国家名称的缩写': 数量, '国家名称的缩写': 数量,
.....
})
worldmap_chart.render_in_browser()
output
我们也可以绘制以五大洲为主的世界地图,代码如下
worldmap_continent = pygal.maps.world.SupranationalWorld()
worldmap_continent.add('Asia', [('asia', 1)])
worldmap_continent.add('Europe', [('europe', 1)])
worldmap_continent.add('Africa', [('africa', 1)])
worldmap_continent.add('North america', [('north_america', 1)])
worldmap_continent.add('South america', [('south_america', 1)])
worldmap_continent.add('Oceania', [('oceania', 1)])
worldmap_continent.add('Antartica', [('antartica', 1)])
worldmap_continent.render_in_browser()
output
当然我们也可以将某个国家作为绘制,例如我们以法国为例,首先我们需要下载绘制单独某个国家的地图所依赖的插件
pip install pygal_maps_fr
代码如下
fr_chart = pygal.maps.fr.Regions()
fr_chart.title = '法国区域图' fr_chart.add('区域名称', ['数量'])
fr_chart.render_in_browser()
output
但是提及绘制某个国家的地图而言,目前支持的国家的数量并不多,在官网上面也只罗列法国和瑞士这两个国家,其他国家的插件下载,小编尝试下载了一下,都下载不了,后面就等官方的更新与优化把
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14