作者:俊欣
来源:关于数据分析与可视化
今天小编来给大家介绍一下如何在Pyecharts当中画出炫酷的图表,通过该模块当中的一系列设置,本文我们大致会介绍pyecharts当中的
Pyecharts模块内部内置了10多种不同风格的图表绘制样式,分别是
LIGHT = "light" DARK = "dark" WHITE = "white" CHALK: str = "chalk" ESSOS: str = "essos" INFOGRAPHIC: str = "infographic" MACARONS: str = "macarons" PURPLE_PASSION: str = "purple-passion" ROMA: str = "roma" ROMANTIC: str = "romantic" SHINE: str = "shine" VINTAGE: str = "vintage" WALDEN: str = "walden" WESTEROS: str = "westeros" WONDERLAND: str = "wonderland" HALLOWEEN: str = "halloween"
我们依次来看一下每一种风格出来的样子,这次我们用到的数据集依然是Pyecharts模块当中内置的模块,当然我们首先需要导入相对应的模块
from pyecharts import options as opts from pyecharts.charts import Bar, Page from pyecharts.faker import Collector, Faker from pyecharts.globals import ThemeType
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Light"))
) c.render("1.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Dark"))
) c.render("2.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Chalk"))
) c.render("3.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ESSOS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Essos"))
) c.render("4.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Infographic"))
) c.render("5.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.MACARONS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Macarons"))
) c.render("6.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-PURPLE_PASSION"))
) c.render("7.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMA))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-ROMA"))
) c.render("8.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMANTIC))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-ROMANTIC"))
) c.render("9.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Shine"))
) c.render("10.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Vintage"))
) c.render("11.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WALDEN))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Walden"))
) c.render("12.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Westeros"))
) c.render("13.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WONDERLAND))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Wonderland"))
) c.render("14.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.HALLOWEEN))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Halloween"))
) c.render("15.html")
output
我们同时还能为自己绘制的图表配上自带的背景图片
c = (
Bar(
init_opts=opts.InitOpts(
bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"}
)
)
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(
title="Bar-背景图基本示例",
subtitle="我是副标题",
title_textstyle_opts=opts.TextStyleOpts(color="white"),
)
)
)
c.add_js_funcs( """
var img = new Image(); img.src = 'https://t7.baidu.com/it/u=2638406194,523661981&fm=193&f=GIF';
""" )
c.render("柱状图-自带背景图.html")
output
好吧,最后一张稍微有点丑,但是读者朋友们可以替换成自己喜欢的背景图片,说不定会非常的好看。
所以看了这么多张图之后,你们最喜欢哪种风格的呢?评论区留言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26