
前几天,我们数据分析就业班新报名的一个学员跟我们聊起了她的报名原因:她在面试一家心仪行业头部大厂的市场总监岗位时,三面的业务笔试70%内容都需要用数据分析来解答。虽然市场工作经验、管理能力和资源都不错,但还是遗憾的折戟沉沙。
所以她痛定思痛找到CDA数据分析师,一定要快速又有保障的系统掌握数据分析的能力。
上面这个学员遇到的这个问题不是个例,而是现在职场高阶晋升的普遍需求。
CDA数据分析师小编想起了知乎上有一个很火的帖子:如何能够拿到年薪50万?这个帖子受到了很多人的关注。
我个人认为想要拿到年薪50万,首先你要能够为公司带来相应的价值。
我和很多互联网从业者都交流过,他们大部分人一致认为自己工资不高的原因是因为待在小公司,如果换在阿里、腾讯、华为等企业,就一定能够拿到高薪。
不可否认这是其中的一个因素,但是你有没有想过,你目前掌握的技能支持你拿到年薪50万吗?
有很多人说自己的专业水平在行业同等职位中已经属于上层水平,但我想说的是这还远远不够。你想要拿到高薪,就一定要拥有一项通用技能。
所谓通用技能,我认为要满足几个条件:
1.能够为自己的职业增添色彩,无论是换工作还是涨薪都能如鱼得水。
2.帮助公司解决实际的业务问题,推动业务数据增长。
3.发展前景好,薪资涨幅高。
这里我推荐的技能是:数据分析
有人曾经分析过1000份简历,70%以上的岗位都要求具备数据分析能力,特别是高阶岗位。
翻看某招聘网站产品总监、市场总监、运营总监等任职资格时,都要求具备分析能力。当然,这个层级的分析必定是基于数据,而不是凭经验拍脑袋。
如果你不懂数据想要在互联网行业发展起来是非常困难的。只能一直在基层岗位做执行工作,而且还要面临随时被淘汰的风险。
无论是产品、市场还是运营只有具备数据分析能力,才能让策略更科学且落地,对业务产生的价值才能够更高。
举个例子
初级运营:你可能每天都在看数据、并把他们筛选出来。但是你却发现不了业务问题,解决不了业务困境。
高级运营:你需要对业务指标负责,定期通过数据来发现业务问题。迅速做出动作,对业务结果负责。
初级产品经理:容易盲目的做出一堆功能,却不知道这些功能的效用,也不知如何做优先级排序。
高级产品经理:通过建立数据漏斗定义问题所在,且能找到可评估的数据指标来跟进上线功能的效果,用数据驱动产品业务增长。
通过以上介绍,你会发现岗位越高,需要的数据分析能力就要越强。因为只能通过数据分析才能解决实际的业务问题。对于企业来说,这才是高价值的体现。
互联网、金融、咨询、电信、零售、医疗、旅游……不管你身处什么行业,可以说数据分析能力都是你晋升路上的一大助力。
具备数据分析能力的你为什么会受到公司青睐?
发现问题
发现问题是数据分析的第一层目的,其目的在于通过一定的数据呈现形式,挖掘和发现运营各个环节与业务增长各个模块的问题,将问题进行分类和汇总,即明确当前运营状况问题所在。
分析问题
第二层目的是在发现问题后,需要梳理其出现当前结果的具体原因,且是以实际情况为依据的。发现的每一个问题,可能是业务层面的每个变动所致,也可能是产品层面的迭代所致,因此需要一一排查,得出一个实际有效的结论。
解决方案
当从发现问题,并找到了问题的具体原因后,数据分析第三个层面目的是提出解决问题的方案,解决问题是数据分析的最终目的。解决问题需要运用一定的数据分析工具及分析方法,并且有足够的数据源来支撑,将挖掘出来的问题,从业务、运营、产品等层面进行对接,找出最佳的解决方案。
很多不懂数据的职场人,常常会被别人的数据搞糊涂,工作中很多东西都无法判断。比如,前一段时间,媒体说腾讯平均月薪 7 万,这么写的人,如果不是为了博眼球,真的长脑子了?看了之后,如果你信的话,别人会怀疑你没长脑子。
类似的问题还有很多,可以这么说,具备数据分析能力能让自己更有价值。除此之外,也能帮助我们做好各种决策。
除了业务上的思维外,如果想要深度学习数据分析,则需要掌握一些工具的使用如:Excel、Python、R、SQL等等。如果想要进一步了解、学习,可以扫码领取数据分析技能礼包。
如我们上文所说,数据分析能力可以说是每个业务岗位必备的能力,这一点也成为了越来越多企业管理层的共识。
但掌握数据能力的急迫性还没有得到大家足够的重视!大家学习数据分析能力的动作还没有!
很多人可能会像我们前言中介绍的这位学员一样,只有撞了南墙,错失了好机会后,才会在悔恨之余开始积极学习。
同为市场人,小编之前也是这种心态,这与我们对本岗位的长远职业规划不清晰有一定关系。
今儿小编汇总了几个数据能力加持下的业务岗位成长路线图,希望帮你把前路看的更清楚。
不管是根据目前业务需求自学还是为以后职场发展系统学习,小编认为你都应该行动起来了。
那么,不妨今天先从进一步了解数据分析开始~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28