京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前几天,我们数据分析就业班新报名的一个学员跟我们聊起了她的报名原因:她在面试一家心仪行业头部大厂的市场总监岗位时,三面的业务笔试70%内容都需要用数据分析来解答。虽然市场工作经验、管理能力和资源都不错,但还是遗憾的折戟沉沙。
所以她痛定思痛找到CDA数据分析师,一定要快速又有保障的系统掌握数据分析的能力。
上面这个学员遇到的这个问题不是个例,而是现在职场高阶晋升的普遍需求。
CDA数据分析师小编想起了知乎上有一个很火的帖子:如何能够拿到年薪50万?这个帖子受到了很多人的关注。
我个人认为想要拿到年薪50万,首先你要能够为公司带来相应的价值。
我和很多互联网从业者都交流过,他们大部分人一致认为自己工资不高的原因是因为待在小公司,如果换在阿里、腾讯、华为等企业,就一定能够拿到高薪。
不可否认这是其中的一个因素,但是你有没有想过,你目前掌握的技能支持你拿到年薪50万吗?
有很多人说自己的专业水平在行业同等职位中已经属于上层水平,但我想说的是这还远远不够。你想要拿到高薪,就一定要拥有一项通用技能。
所谓通用技能,我认为要满足几个条件:
1.能够为自己的职业增添色彩,无论是换工作还是涨薪都能如鱼得水。
2.帮助公司解决实际的业务问题,推动业务数据增长。
3.发展前景好,薪资涨幅高。
这里我推荐的技能是:数据分析
有人曾经分析过1000份简历,70%以上的岗位都要求具备数据分析能力,特别是高阶岗位。
翻看某招聘网站产品总监、市场总监、运营总监等任职资格时,都要求具备分析能力。当然,这个层级的分析必定是基于数据,而不是凭经验拍脑袋。
如果你不懂数据想要在互联网行业发展起来是非常困难的。只能一直在基层岗位做执行工作,而且还要面临随时被淘汰的风险。
无论是产品、市场还是运营只有具备数据分析能力,才能让策略更科学且落地,对业务产生的价值才能够更高。
举个例子
初级运营:你可能每天都在看数据、并把他们筛选出来。但是你却发现不了业务问题,解决不了业务困境。
高级运营:你需要对业务指标负责,定期通过数据来发现业务问题。迅速做出动作,对业务结果负责。
初级产品经理:容易盲目的做出一堆功能,却不知道这些功能的效用,也不知如何做优先级排序。
高级产品经理:通过建立数据漏斗定义问题所在,且能找到可评估的数据指标来跟进上线功能的效果,用数据驱动产品业务增长。
通过以上介绍,你会发现岗位越高,需要的数据分析能力就要越强。因为只能通过数据分析才能解决实际的业务问题。对于企业来说,这才是高价值的体现。
互联网、金融、咨询、电信、零售、医疗、旅游……不管你身处什么行业,可以说数据分析能力都是你晋升路上的一大助力。
具备数据分析能力的你为什么会受到公司青睐?
发现问题
发现问题是数据分析的第一层目的,其目的在于通过一定的数据呈现形式,挖掘和发现运营各个环节与业务增长各个模块的问题,将问题进行分类和汇总,即明确当前运营状况问题所在。
分析问题
第二层目的是在发现问题后,需要梳理其出现当前结果的具体原因,且是以实际情况为依据的。发现的每一个问题,可能是业务层面的每个变动所致,也可能是产品层面的迭代所致,因此需要一一排查,得出一个实际有效的结论。
解决方案
当从发现问题,并找到了问题的具体原因后,数据分析第三个层面目的是提出解决问题的方案,解决问题是数据分析的最终目的。解决问题需要运用一定的数据分析工具及分析方法,并且有足够的数据源来支撑,将挖掘出来的问题,从业务、运营、产品等层面进行对接,找出最佳的解决方案。
很多不懂数据的职场人,常常会被别人的数据搞糊涂,工作中很多东西都无法判断。比如,前一段时间,媒体说腾讯平均月薪 7 万,这么写的人,如果不是为了博眼球,真的长脑子了?看了之后,如果你信的话,别人会怀疑你没长脑子。
类似的问题还有很多,可以这么说,具备数据分析能力能让自己更有价值。除此之外,也能帮助我们做好各种决策。
除了业务上的思维外,如果想要深度学习数据分析,则需要掌握一些工具的使用如:Excel、Python、R、SQL等等。如果想要进一步了解、学习,可以扫码领取数据分析技能礼包。
如我们上文所说,数据分析能力可以说是每个业务岗位必备的能力,这一点也成为了越来越多企业管理层的共识。
但掌握数据能力的急迫性还没有得到大家足够的重视!大家学习数据分析能力的动作还没有!
很多人可能会像我们前言中介绍的这位学员一样,只有撞了南墙,错失了好机会后,才会在悔恨之余开始积极学习。
同为市场人,小编之前也是这种心态,这与我们对本岗位的长远职业规划不清晰有一定关系。
今儿小编汇总了几个数据能力加持下的业务岗位成长路线图,希望帮你把前路看的更清楚。
不管是根据目前业务需求自学还是为以后职场发展系统学习,小编认为你都应该行动起来了。
那么,不妨今天先从进一步了解数据分析开始~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27