
如果有人问:2021年最有前途的职业是什么?数据分析师一定名列前茅!
在大数据时代的今天,数据分析作为一个热门行业,曾被Times时代杂志誉为“21世纪最热门五大新兴”行业之一。据统计,目前在世界五百强的企业中,有百分之九十的企业都建立了数据分析部门,未来中国对数据分析师的需求更是呈现上升趋势。
在这种趋势之下,数据分析已经不单单是数据分析师的“专业本领,”意味着成为我们每一个职场人士都需要掌握的技能。
对于职场已入瓶颈,或者想谋求更好发展的互联网人而言,转行数据分析正是一个不可多得的机遇。
在转行数据分析之前,小编先从从业者的角度带着大家梳理一下数据分析,方便大家根据自己的实际情况做出选择。
01、人人都可以转行数据分析吗?
首先我可以明确地告诉大家,零基础转行数据分析是可行的。
但过程并非是一帆风顺的,需要经过很多努力。但是如果你不愿意吃学习的苦;怀着三天打鱼,两天晒网的心态;那么我建议你趁早放弃。
自从大数据的概念兴起后,数据分析师随之而来,很多职场人士都想在这个香饽饽上咬一口,但是你真的了解过这个行业吗?
数据分析作为新兴行业,根据岗位职责总体可以概括为以下两个方向:
我们先来聊聊业务岗位的数据分析师,此方向更加看重逻辑思维,比如你思考框架的完整性、思维的灵活性,对数据要有敏锐的嗅觉。除此之外,你还需要掌握一些行之有效的数据分析方法,并且能够灵活的与自身工作相结合。比如:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等等。
另一个则是技术方向的数据分析师,此方向更看重数据技术,比如统计学基础、数据库操作(SQL等)、编程语言(Python、R等)、机器学习等等。你需要对业务有很深的理解,这样才能对业务数据进行清洗、建模、分析。此方向的数据分析师薪资虽然高,但难度也是也极大的,对于刚刚入门数据分析的朋友,我更加推荐业务岗位的数据分析师。
如果你真的对数据分析感兴趣,就要付出行动,而不是把它停留在脑海里。前段时间刷微博看到了一段很有意思的话,分享给大家。
15岁觉得游泳难,放弃游泳,
18岁遇到一个你喜欢的人约你去游泳,你只好说“我不会”。
18岁觉得英文难,放弃英文,28岁出现一个很棒但要会英文的工作,你只好说“我不会”。
人生前期越嫌麻烦,越懒得学,后来就越可能错过让你动心的人和事,错过新风景。
02、数据分析师的日常工作有哪些?
在聊完数据分析的岗位职责划分之后,我想再和大家聊聊数据分析日常需要做哪些工作?
1.日常数据监控
数据分析师必须会监控数据和收集数据,利用数据得出有效的结论,并提供更好的决策方案。数据获取主要有两种方式:内部数据和外部获取。内部数据又分为两种方式,一种是通过公司的数据库和数据表直接获取;
另一种则是收集数据,你必须要通过整理公司的大量文件,从中收集到你所需要的数据。而外部获取则主要是检索,通过搜索引擎、行业报告还有技术爬取等手段获取到数据。
2.评估业务指标
最近搞的一个运营活动效果好不好?
我们该如何衡量这个标准呢?如果是微信的运营者,他会通过自己的用户量、阅读量,来作为这个平台的参数指标。
这部分内容在开始之前就需要数据分析师来全盘考虑,依据日常运营指标,来制定全盘的运营计划。并根据方案来布置需要监控/收集数据的位置,这是一个系统的工程。
3.业务优化
没有一款产品是完美的,只要被生产出来,就一定有它可以提升的空间。
当我们拿到一款产品,并找到它的发展目标。那么,我们就可以根据产品的生命周期,不断地监控、发现、优化产品的不足。
4.业务决策
当我们在帮助一款产品做决策时,很多小伙伴第一反应就是A/B测试。的确,这是很重要的一方面,但绝不是全部。
在决策过程中,我们更要注重根据产品需要解决的问题,从而去设立对应问题的优先级。哪些是应该优先处理的?哪些特性的改变,可以快速改善产品?
这个时候就需要我们数据分析师发挥作用了,协助产品做测试,从而判断问题的优先级。通过4个紧急、重要象限,来帮助产品做决策。
5.长远战略
现在的年轻人都喜欢什么啊?
这类问题往往不是那么迫切,但是为了公司的长远发展和自身影响力等,还是会接触到的。这里最关键的问题是如何从中挖掘出最有价值、最符合公司长远发展的问题,从而制定出符合公司个性化的产品。
成长就是在不断认识自我的状态下发展,希望这些东西可以帮助到正在迷茫中的朋友。总体而言,数据分析适合大多数人来学习,但是也需要付出一些努力。
03、关于学习资料
在写这篇文章之前,经过几个月的努力,我整理了一套数据分析技能视频,现在免费提供给大家学习,希望能够帮助职场人提升自己的技能,也希望能够帮助到想转行的小白,对于数据分析有个更深的认知。
扫码领取学习资料
祝你早日拿到心意offer!
数据分析学习资料
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28