
作者:李晓飞
来源:Python 技术
爬虫程序想必大家都很熟悉了,随便写一个就可以获取网页上的信息,甚至可以通过请求自动生成 Python 脚本[1]。
最近我遇到一个爬虫项目,需要爬取网上的文章。感觉没有什么特别的,但问题是没有限定爬取范围,意味着没有明确的页面的结构。
对于一个页面来说,除了核心文章内容外,还有头部,尾部,左右列表栏等等。有的页面框架用 div 布局,有的用 table,即使都用 div,不太的网站风格和布局也不同。
但问题必须解决,我想,既然搜索引擎抓取到各种网页的核心内容,我们也应该可以搞定,拎起 Python, 说干就干!
如何解决呢?
开始想了一个取巧的方法,就是利用工具(wkhtmltopdf[2])将目标网页生成 PDF 文件。
好处是不必关心页面的具体形式,就像给页面拍了一张照片,文章结构是完整的。
虽然 PDF 是可以源码级检索,但是,生成 PDF 有诸多缺点:
耗费计算资源多、效率低、出错率高,体积太大。
几万条数据已经两百多G,如果数据量上来光存储就是很大的问题。
不生成PDF,有简单办法就是通过 xpath[3] 提取页面上的所有文字。
但是内容将失去结构,可读性差。更要命的是,网页上有很多无关内容,比如侧边栏,广告,相关链接等,也会被提取下来,影响内容的精确性。
为了保证有一定的结构,还要识别到核心内容,就只能识别并提取文章部分的结构了。像搜索引擎学习,就是想办法识别页面的核心内容。
我们知道,通常情况下,页面上的核心内容(如文章部分)文字比较集中,可以从这个地方着手分析。
于是编写了一段代码,我是用 Scrapy[4] 作为爬虫框架的,这里只截取了其中提取文章部分的代码 :
divs = response.xpath("body//div")
sel = None
maxvalue = 0 for d in divs:
ds = len(d.xpath(".//div"))
ps = len(d.xpath(".//p")) value = ps - ds if value > maxvalue:
sel = { "node": d, "value": value }
maxvalue = value print("".join(sel['node'].getall()))
简单明了,测试了几个页面确实挺好。
不过大量提取时发现,很多页面提取不到数据。仔细查看发现,有两种情况。
再调整了一下策略,不再区分 div,查看所有的元素。
另外优先选择更多的 p,在其基础上再看更少的 div。调整后的代码如下:
divs = response.xpath("body//*")
sels = []
maxvalue = 0 for d in divs:
ds = len(d.xpath(".//div"))
ps = len(d.xpath(".//p")) if ps >= maxvalue:
sel = { "node": d, "ps": ps, "ds": ds
}
maxvalue = ps
sels.append(sel)
sels.sort(lambda x: x.ds)
sel = sels[0] print("".join(sel['node'].getall()))
经过这样修改之后,确实在一定程度上弥补了前面的问题,但是引入了一个更麻烦的问题。
就是找到的文章主体不稳定,特别容易受到其他部分有些 p 的影响。
既然直接计算不太合适,需要重新设计一个算法。
我发现,文字集中的地方是往往是文章主体,而前面的方法中,没有考虑到这一点,只是机械地找出了最大的 p。
还有一点,网页结构是个颗 DOM 树[6]
那么越靠近 p 标签的地方应该越可能是文章主体,也就是说,计算是越靠近 p 的节点权值应该越大,而远离 p 的结点及时拥有很多 p 但是权值也应该小一点。
经过试错,最终代码如下:
def find(node, sel): value = 0 for n in node.xpath("*"): if n.xpath("local-name()").get() == "p":
t = "".join([s.strip() for s in (n.xpath('text()').getall() + n.xpath("*/text()").getall())]) value += len(t) else: value += find(n, a)*0.5 if value > sel["value"]:
sel["node"] = node
sel["value"] = value return value sel = { 'value': 0, 'node': None
}
find(response.xpath("body"), sel)
通过这样改造之后,效果特别好。
为什么呢?其实利用了密度原理,就是说越靠近中心的地方,密度越高,远离中心的地方密度成倍的降低,这样就能筛选出密度中心了。
50% 的坡度比率是如何得到的呢?
其实是通过实验确定的,刚开始时我设置为 90%,但结果时 body 节点总是最优的,因为 body 里包含了所有的文字内容。
反复实验后,确定 50% 是比较好的值,如果在你的应用中不合适,可以做调整。
描述了我如何选取文章主体的方法后,后没有发现其实很是很简单的方法。而这次解决问题的经历,让我感受到了数学的魅力。
一直以来我认为只要了解常规处理问题的方式就足以应对日常编程了,可以当遇到不确定性问题,没有办法抽取出简单模型的问题时,常规思维显然不行。
所以平时我们应该多看一些数学性强的,解决不确定性问题的方法,以便提高我们的编程适应能力,扩展我们的技能范围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17