
来源:早起Python
作者:刘早起
本文将基于东京奥运会奖牌榜数据,使用 pandas 进行数据分析可视化实战(文末可以下载数据与源码)
首先是奥运会奖牌数据的获取,虽然有很多接口提供数据,但是通过奥运会官网拿到的数据自然是最可靠的
通过对东京奥运会官网奖牌榜的页面分析,发现其表格在前端是通过 嵌入的,所以可以使用 pandas.read_html() 轻松读取
之后再读取本地分日奖牌数据并将国家ID进行匹配
注意到上面的 df1 列名并没有完整,所以可以使用 rename 函数修改指定列的名称
既然 df2 有时间列,为了方便后面分析,自然要检查一下其类型
可以看到,获奖时间列虽然没有缺失值但其并不是pandas支持的时间类型。
好在修改列属性并不是什么困难的事情,一行代码轻松搞定(7-12)
通过观察可以发现,df2并没有 国家名称 列,但是其与 df1 有一个共同列 国家id
为了给 df2 新增一列 国家名称 列,一个自然的想法就是通过 国家id 列将两个数据框进行合并,在 pandas 中实现,也不是什么困难的事情
现在 df2 就调整的差不多了(由于源数据问题,部分获奖时间与真实时间有一定误差),下面开始进行分析
下面对 df2 进行一些统计分析,计算每个国家的奖牌总数(也就是出现次数),并查看奖牌数前5名,结果可以用 df1 进行验证
看完国家奖牌排行,接下来计算获得奖牌最多的运动员(注意:仅统计单人项目)
这里无需使用分组功能,只需要按照运动员姓名列进行频率统计即可。
下面筛选出全部乒乓球的获奖信息,这里的筛选有多种写法,你能写出几种?
现在查看各国在各项目上的奖牌详情,下面是通过透视得到的答案,但你会使用使用数据分组功能吗?
在上一题的基础上,查询中国队的获奖牌详情,注意是查询而不是筛选,所以使用上上一题的方法将会报错
如何将上一题的结果进一步突出展示,可以使用 pandas 中的 style
上面说到,df2 的获奖时间部分并不准确(主要体现在小时上),所以我们干脆将时间精确到天,这里可以使用 map 对一整列进行操作
接下来,让我们统计每天产生的奖牌总数
可以看到,最后一天产生的奖牌数量最多
再来查看不同项目在不同国家的分布情况,同样也可以使用分组功能实现
接下来让我们计算中国每日总奖牌数量,你能想到该如何实现吗?
最后,计算前十名各国每日奖牌数量统计,注意:对于第一天没有数据的国家用0填充,其余时间的缺失值用上一日数据填充。
这看似简单的问题,涉及的 pandas 操作还真不少!
首先制作奖牌排行榜
上图使用 matplotlib 制作,看起来不错,但代码量也确实不少
接下来使用 pyecharts 绘制上一题奖牌榜各奖牌的细分
使用 pyecharts 的好处就是使用封装好的方法,代码量相对较少
现在进一步绘制中国队的奖牌分布
同样使用 pyecharts ,实际行代码搞定
现在绘制奖牌分布的热力地图
使用 pyecharts 绘制,绘图代码不多,但是调整国家中英文映射字典是一件痛苦的事情
最后绘制每日奖牌榜前十奖牌数量的动态图,使用 matplotlib 或 pyecharts 均得不到较好的效果,所以这里使用另一个第三方库 bar_chart_race 进行绘制
以上就是基于 2020年东京奥运会 数据进行的一系列数据分析可视化流程,基本涉及到利用 Pandas 进行数据分析的主要操作,是一份不可多得的简单易懂、利于探索的数据集。
df1 = pd.read_html("https://olympics.com/tokyo-2020/olympic-games/zh/results/all-sports/medal-standings.htm")[0]
df2 = pd.read_csv("东京奥运会奖牌分日数据.csv")
修改列名
df1.rename(columns={'Unnamed: 2':'金牌数', 'Unnamed: 3':'银牌数', 'Unnamed: 4':'铜牌数'},inplace=True)
数据类型查看与修改
df2.info()
df2['获奖时间'] = pd.to_datetime(df2['获奖时间'])
数据合并
temp = pd.merge(df1,df2,on = '国家id') #先合并 temp['获奖时间'] = pd.to_datetime(temp['获奖时间'])#修改类型 temp = temp.sort_values(by=['获奖时间','奖牌类型'], ascending=True, ignore_index=True)#排序,和df2一样 df2['国家'] = temp['国家奥委会']#赋值
数据分组
数据统计
数据筛选
数据透视
pd.pivot_table(df2,values = ['奖牌类型'],index = ['国家','运动类别'],aggfunc = 'count')
数据查询
result.query("国家 == ['中国']")
个性化查看
(result.query("国家 == ['中国']")
.style
.bar(subset=['奖牌类型'],color='skyblue'))
数据格式化
def time_format(x): return x.strftime("%m月%d日")
df2['获奖时间'] = df2['获奖时间'].map(time_format)
分组统计
df2.groupby("获奖时间")['国家'].count().sort_values()
数据透视
pd.pivot_table(df2,values = ['奖牌类型'],index = ['运动类别','国家'],aggfunc = 'count')
数据计算
pd.pivot_table(df2,values = ['奖牌类型'],index = ['获奖时间','国家'],aggfunc = 'count').query("国家 == ['中国']").cumsum()
数据计算
data = pd.pivot_table(df2,values = ['奖牌类型'],index = ['获奖时间','国家'],aggfunc = 'count').query("国家 == ['美国', '中国', '日本', '英国', 'ROC', '澳大利亚', '荷兰', '法国', '德国', '意大利']") data = data.unstack() data.columns = data.columns.get_level_values(1) data.columns.name = None data = data.cumsum() data = data.fillna(axis=0,method='ffill').fillna(0) data
条形图
堆叠图
环形图
地图
动态图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11