京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:早起Python
作者:刘早起
本文将基于东京奥运会奖牌榜数据,使用 pandas 进行数据分析可视化实战(文末可以下载数据与源码)
首先是奥运会奖牌数据的获取,虽然有很多接口提供数据,但是通过奥运会官网拿到的数据自然是最可靠的
通过对东京奥运会官网奖牌榜的页面分析,发现其表格在前端是通过 嵌入的,所以可以使用 pandas.read_html() 轻松读取
之后再读取本地分日奖牌数据并将国家ID进行匹配
注意到上面的 df1 列名并没有完整,所以可以使用 rename 函数修改指定列的名称
既然 df2 有时间列,为了方便后面分析,自然要检查一下其类型
可以看到,获奖时间列虽然没有缺失值但其并不是pandas支持的时间类型。
好在修改列属性并不是什么困难的事情,一行代码轻松搞定(7-12)
通过观察可以发现,df2并没有 国家名称 列,但是其与 df1 有一个共同列 国家id
为了给 df2 新增一列 国家名称 列,一个自然的想法就是通过 国家id 列将两个数据框进行合并,在 pandas 中实现,也不是什么困难的事情
现在 df2 就调整的差不多了(由于源数据问题,部分获奖时间与真实时间有一定误差),下面开始进行分析
下面对 df2 进行一些统计分析,计算每个国家的奖牌总数(也就是出现次数),并查看奖牌数前5名,结果可以用 df1 进行验证
看完国家奖牌排行,接下来计算获得奖牌最多的运动员(注意:仅统计单人项目)
这里无需使用分组功能,只需要按照运动员姓名列进行频率统计即可。
下面筛选出全部乒乓球的获奖信息,这里的筛选有多种写法,你能写出几种?
现在查看各国在各项目上的奖牌详情,下面是通过透视得到的答案,但你会使用使用数据分组功能吗?
在上一题的基础上,查询中国队的获奖牌详情,注意是查询而不是筛选,所以使用上上一题的方法将会报错
如何将上一题的结果进一步突出展示,可以使用 pandas 中的 style
上面说到,df2 的获奖时间部分并不准确(主要体现在小时上),所以我们干脆将时间精确到天,这里可以使用 map 对一整列进行操作
接下来,让我们统计每天产生的奖牌总数
可以看到,最后一天产生的奖牌数量最多
再来查看不同项目在不同国家的分布情况,同样也可以使用分组功能实现
接下来让我们计算中国每日总奖牌数量,你能想到该如何实现吗?
最后,计算前十名各国每日奖牌数量统计,注意:对于第一天没有数据的国家用0填充,其余时间的缺失值用上一日数据填充。
这看似简单的问题,涉及的 pandas 操作还真不少!
首先制作奖牌排行榜
上图使用 matplotlib 制作,看起来不错,但代码量也确实不少
接下来使用 pyecharts 绘制上一题奖牌榜各奖牌的细分
使用 pyecharts 的好处就是使用封装好的方法,代码量相对较少
现在进一步绘制中国队的奖牌分布
同样使用 pyecharts ,实际行代码搞定
现在绘制奖牌分布的热力地图
使用 pyecharts 绘制,绘图代码不多,但是调整国家中英文映射字典是一件痛苦的事情
最后绘制每日奖牌榜前十奖牌数量的动态图,使用 matplotlib 或 pyecharts 均得不到较好的效果,所以这里使用另一个第三方库 bar_chart_race 进行绘制
以上就是基于 2020年东京奥运会 数据进行的一系列数据分析可视化流程,基本涉及到利用 Pandas 进行数据分析的主要操作,是一份不可多得的简单易懂、利于探索的数据集。
df1 = pd.read_html("https://olympics.com/tokyo-2020/olympic-games/zh/results/all-sports/medal-standings.htm")[0]
df2 = pd.read_csv("东京奥运会奖牌分日数据.csv")
修改列名
df1.rename(columns={'Unnamed: 2':'金牌数', 'Unnamed: 3':'银牌数', 'Unnamed: 4':'铜牌数'},inplace=True)
数据类型查看与修改
df2.info()
df2['获奖时间'] = pd.to_datetime(df2['获奖时间'])
数据合并
temp = pd.merge(df1,df2,on = '国家id') #先合并 temp['获奖时间'] = pd.to_datetime(temp['获奖时间'])#修改类型 temp = temp.sort_values(by=['获奖时间','奖牌类型'], ascending=True, ignore_index=True)#排序,和df2一样 df2['国家'] = temp['国家奥委会']#赋值
数据分组
数据统计
数据筛选
数据透视
pd.pivot_table(df2,values = ['奖牌类型'],index = ['国家','运动类别'],aggfunc = 'count')
数据查询
result.query("国家 == ['中国']")
个性化查看
(result.query("国家 == ['中国']")
.style
.bar(subset=['奖牌类型'],color='skyblue'))
数据格式化
def time_format(x): return x.strftime("%m月%d日")
df2['获奖时间'] = df2['获奖时间'].map(time_format)
分组统计
df2.groupby("获奖时间")['国家'].count().sort_values()
数据透视
pd.pivot_table(df2,values = ['奖牌类型'],index = ['运动类别','国家'],aggfunc = 'count')
数据计算
pd.pivot_table(df2,values = ['奖牌类型'],index = ['获奖时间','国家'],aggfunc = 'count').query("国家 == ['中国']").cumsum()
数据计算
data = pd.pivot_table(df2,values = ['奖牌类型'],index = ['获奖时间','国家'],aggfunc = 'count').query("国家 == ['美国', '中国', '日本', '英国', 'ROC', '澳大利亚', '荷兰', '法国', '德国', '意大利']") data = data.unstack() data.columns = data.columns.get_level_values(1) data.columns.name = None data = data.cumsum() data = data.fillna(axis=0,method='ffill').fillna(0) data
条形图
堆叠图
环形图
地图
动态图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12