京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Allen
本文为「心中有数」CDA征文作品
首先“虚心”地立个flag,今年年底 LEVEL III 必过,两年通关CDA!(欧气满满)
其实,内心还是有点小担心,LEVEL III 要考案例实操,Python还用的不是很溜,加上还未正式开刷实操题,对题目的形式有些不确定。
但对于LEVEL I 和 LEVEL II 双双得A(得意),本人还是有些一得之见,在此给大家做个分享,希望能帮助到正在备考中的小伙伴们!
我在某互联网电商平台任职运营岗,在数据分析板块属于小白,虽有一定EXCEL的基础,但与平时工作中接触的用户行为数据、产品数据分析来讲,这点完全不够用,因此不得不提升自己的数据分析技能,于是一开始就在网上搜索自学,逐渐了解了大数据、数据库、机器学习这些专用名词,特别是被数字化转型影响,感觉这个时代如果不具备点数据思维和技能,就很快会被AI替代了。
另一方面,自己是业务出身,毕竟数据分析也是为业务服务,所以业务经验+专业技能,这样的发展来对我来讲更靠谱,所以下定决心学习,逼自己一把。
我是在19年开始自学数据分析,下定决心后,就以考取CDA认证作为最终目标(毕竟老牌认证)。
正式备考是从2020年开始,平均每天学习2小时左右,主要以看书(10本)、刷题(官方2000题)和辅导视频(官网课程)为主,到现在快两年了,痛并坚持着,坚持并难受着,但最终还好,LEVEL I 和 LEVEL II 都拿到了A的成绩,也算是享受到了一种来自内啡肽的快乐。
目前正在继续备战LEVEL III,希望能两年圆梦,噩梦结束,美梦成真!
CDA LEVEL I
首先说下LEVEL I:
我大概备考了三个月时间,在备考前,我首先是找官方考试大纲,通过整体把握了解各个模块的大概内容、关系和学习路径,做到心中有一个whole picture,这是LEVEL I的考试大纲:
整体来讲,LEVEL I 就是入门概念+基础技能+可视化,以业务描述性分析为目标,分为上图七个章节,大纲的安排是首先让考生先了解数据分析基本概念、方法和职业,然后以分析过程为路径,先了解什么是数据,数据应该怎么获取,获取后有哪些分析方法,如何将这些方法与业务结合,最后得出可视化的分析结果,思路清晰,学习可以有的放矢。对我来讲(非技术出身),最难的应该属于SQL数据库,毕竟有代码部分,但真正学起来上手还是较容易的,并且可以安慰的是考试不会考编程。
LEVEL I 备考中,
基本可框定两个范围:
LEVEL I 官方的推荐书籍都是选读,这是官方推荐目录:
结合我自身的经验推荐大家必读的有《SQL入门经典》和《统计学》两本就足够了。
CDA LEVEL II
其次说下LEVEL II:
LEVEL I 拿到A后信心满满,短暂休息了一个月,就开始了LEVEL II 的备考。
因为LEVEL II 涉及的教材和学习资料较多,并且还学习了Python,所以LEVEL II 备考我准备了大概4-5个月时间。
以下是LEVEL II 的考纲:
整体来讲,LEVEL II 为数据分析的进阶内容。以专业数据分析流程,分为了6个部分,数据的采集与处理,采集后对数据进行规范化储存管理,接着根据业务的需求进行标签体系的设计,对标签数据进行统计分析、建模,最终数字化工作方法部分为目前比较火热的数字化转型内容,侧重与业务分析流程。LEVEL II 中重难点部分在于统计分析与数据分析模型两部分,这两块设计的专业知识多,要求高的话会用到python进行分析,但值得庆幸的是,LEVEL II 也不考编程操作。
关于LEVEL II 的一些必读选读书籍,官方已经推荐出来,个人建议根据官方的要求学习即可,LEVEL II 主要就是在于花时间,除了啃书看视频,还得实操起来,方能拿到一个理想的成绩。
CDA LEVEL III
最后简单说下LEVEL III ,因为还在备考中,所以对于LEVEL III 的经验分享也只能是一个简单的开头,通过跟其他考生的咨询交流,也有一些重点学习方法。
整体来讲,LEVEL III 在于高级数据分析、数据挖掘、机器学习。
内容涵盖高级分析师的各项基础及进阶的知识点。基础的部分包括数据挖掘基础、高级数据预处理以及机器学习算法。进阶的部分则包括高级特征工程技术、自然语言处理与文本分析及深度学习。在机器学习实战上,涵盖当今较火的几个主题,包括自动机器学习、类别不平衡问题的处理模式、半监督式学习以及模型优化的方法。
LEVEL III 的复习大家推荐的是两本重点教材,《数据挖掘导论》和《数据挖掘:概念与技术》;其次还包括官方必读的几本《机器学习》、《精通特征工程》、《文本分析》等,如下图:
其次就是对模拟题中的案例操作题进行反复的练习,最好能用Python,之前有考生也用的SPSS Modeler这个工具,因为听说案例操作题是历年考过的真题,并且模板和套路都类似,只是需要用的算法可能会不太一样。在此也强烈种草李御玺老师讲的辅导视频课,幽默风趣,深入浅出,对我来讲学习起来很快乐!关于LEVEL III 的一些详细备考方法,得靠通过的大神们分享了。
磕数据的这两年,不仅让我学习了新的技能,而且真正帮助到了我的工作和发展,受益颇深。
这过程让我体会到世界变化之大,稍不留意,新技术可能又来了,无论是企业还是个人,在数字化的潮流中只能勇往直前,只要有这份信念,相信你也能成功上岸!
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
推荐学习书籍
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17