
我们只有先度过把数据当成权力使用的腐败时代,向着数据分享的时代迈进,才能看到激动人心的大数据时代的来临。总之,心里多多少少对我们这一代人抱着这么一点点希望,大家一起开心地“玩”吧!
牛津大学教授维克托·迈尔·舍恩伯格所著的《大数据时代:生活、工作、思维的大变革》一书,被认为是大数据时代到来的先河之作。大数据涉及最多的为计算机、生物学、生态学、经济学、地理学、天文物理和公共卫生等领域,应用较多的方向为网络分析、交通系统、犯罪区域、人权、动植物保护以及传染性疾病和感冒预测等。
全球一部分领先者已经开始思考大数据分析技能和计算水平的提升。大数据时代的来临源于不同领域、不同部门的合作和数据分享,可以说是数据分享的更高层次。但是不得不承认的一个现象是,国内许多领域却在纠结于数据分享,以及数据腐败斗争的事实。
什么是数据?在我看来就是所有可以进一步分析和推理用的知识点。逐年累月的记录、基础数据、加工过的数据都可以作为数据分析中的数据。所谓数据分享,打个比方,就像幼儿园小朋友交换玩具,如果你不自愿交换就没人和你玩,那你就得自己玩,虽然你可能会说自己玩也挺好,但就是要注定孤独终老。“一起玩”这个动作延伸到科研领域其实就是一种合作—大家一起“玩”一堆数据,一起“玩”出一些有趣的结果。但是交换玩具这个在幼儿园里简单的游戏被放到成人的世界就变得异常复杂。数据在成人手中变成了一种稀缺资源和一种权力之后,基本上游戏规则就变成了“我要看得起你我才和你分享,或者你给我什么好处我才给你分享”,而在国内大体上就是这样的情况。
那么,在科研中我们为什么要分享数据?—当然就是为了更好地合作,为了做出更好的工作。“分享”这个动作基本上是出于互相信任,并且对结果有所期待的情况下发生的。我们都常常期待着与比你厉害的人,或者懂你的人,分享并得出更好的、更有用的结果。
那么,为什么我们又不能互相分享数据呢?我认为这其中涉及三个层面的问题。
出于国家安全的考虑
数据分享或者说“泄密”过程中可能损害某些群体的利益。具体不再详述,因为每个国家、每个地区对国家安全的定义不一样。比如,贫困人口比率和饥饿在非洲各国是敏感数据,在其他国家多少可能都是,只是机密级别不一样。“安全”这个词本来也很难界定边界,而且和国际环境、国家利益、财团利益结合在一起时,就太模糊。
前几天看美国乔恩·斯图尔特的每日秀,最近邀请的是当时斯诺登逃离美国时,在我国香港约见的第一位记者。乔恩问那位记者,你认为斯诺登这样泄密幼稚吗?记者回答:“他有一点理想主义,认为尽管自己泄露了机密还是愿意相信国家公正的司法系统。”另一个例子是维基解密,它使得很多国家和政府的机密数据被曝光。不管出发点怎样,最后的泄密者基本上要么背井离乡逃亡,要么沦为阶下之徒。所有涉密或者事关国家安全的数据都是“分享者”的禁区。
技术安全与分享
记得我当时和一位老师讨要卫星影像(他后来给了我数据),他和我提到“国家安全”和“技术安全”这两个词。这里说的技术安全其实是—要是我给了你数据,你做出比我更出色的工作怎么办?作为科研人,每个人多少都会问自己这样的问题。我们到底要不要和其他人分享自己的数据?到底是怕别人超过自己,还是因为获取数据的成本太大你输不起?还是你认真分析所有的利弊之后作出的决定?
如果仅仅出于“害怕别人做出比自己更出色的工作”的心态,科研的前途就令人担忧。这里面涉及一个长远性的问题。长远性也有三个层次:眼前利益、中长期利益和长期利益。普通人关心的柴米油盐是今天、明天的事情,政策决策者作决定至少要看未来十几、二十年后的结果。但科研人员应该看到更长远的未来。不过,作为每天都要“吃穿用度”的科研人员,我们很容易犯短视的毛病。
在我碰到的各国功成名就的科学家里,在我看来都是秉承着“你需要这个数据你就拿去分析,我们一起看看会有什么有趣的结果”这样一种心态。首先是“我们”,然后“一起”,“我们一起”的情况是给你数据的人尊敬你的知识、能力,才会和你讨教、切磋。当你被人欣赏、尊重和信任时,这种转化成的正能量其实是十分强大的。
数据演化成权力
这两者的关系看似有些千丝万缕,理不清头绪。但数据其实是可以转化成一种稀缺资源进而演化成为一种权力的—和国内一些地方政府合作你就会深深体会到这一点,这不仅仅有我个人的部分经历,也听到周围一些人的抱怨。有些所谓“不能分享的数据”,其实真正看了之后,就像对某某声嘶力竭地嘶吼:“十几二十年你们就干了这点事?!”“什么?你们竟然连这个数据都不知道?”“没改过的原始数据在哪里?”……有些情况理解,我国建立也只有短短几十年,很多数据没有,也还未测过,但是也不用编吧?很多社会经济收据采集其实—
1.数据采集部门的工作可以做得更好;
2.拿的是纳税人的钱工作就应该有实实在在可以测量业绩的数据;
3.分享数据虽然要承担风险但是对未来的政府工作开展更有用。
所以总体来说,我们只有先度过把数据当成权力使用的腐败时代,向着数据分享的时代迈进,才能看到激动人心的大数据时代的来临。总之,心里多多少少对我们这一代人抱着这么一点点希望,大家一起开心地“玩”吧!CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28