
来源:AI入门学习
作者:小伍哥
在很多计算任务中,需要统计不同信息出现的次数,最常见的就是统计某段文字中每个词或者每个字出现的次数,也就是常见的词频统计,这个时候,字典就派上了很大的用场,我们看看通过字典怎么进行统计。
我们用鲁迅先生的经典语录作为例子(略有改动),为了简化,就不分词了,自己分字,统计字数即可。分词后形成了一个列表
text = list('床上有两个枕头,一个是我的,另一个也是我的') print(text)
['床', '上', '有', '两', '个', '枕', '头', ',', '一', '个', '是', '我', '的', ',', '另', '一', '个', '也', '是', '我', '的']
通过字典,直接进行统计
word_dic = {} for word in text: if word in word_dic: word_dic[word] += 1 else: word_dic[word] = 1 print(word_dic) {'床': 1, '上': 1, '有': 1, '两': 1, '个': 3, '枕': 1, '头': 1, ',': 2, '一': 2, '是': 2, '我': 2, '的': 2, '另': 1, '也': 1}
上面的语句加了条件判断,显得稍微有点复杂,我们可以简化如下
word_dic = {} for word in text:
word_dic[word] = word_dic.get(word,0)+1 print(word_dic)
{'床': 1, '上': 1, '有': 1, '两': 1, '个': 3, '枕': 1, '头': 1, ',': 2, '一': 2, '是': 2, '我': 2, '的': 2, '另': 1, '也': 1}
还可以用collections 模块的defaultdict进行统计,显得更加简洁,更加专业。
from collections import defaultdict
word_dic = defaultdict(int) for word in text:
word_dic[word] += 1 print(word_dic)
defaultdict('int'>, {'床': 1, '上': 1, '有': 1, '两': 1, '个': 3, '枕': 1, '头': 1, ',': 2, '一': 2, '是': 2, '我': 2, '的': 2, '另': 1, '也': 1})
上面三种方法,看起来简单,实际上,要理解其中的奥妙是非常困难的,特别是对于初学者,大家可以仔细琢磨。
方法一之所以要加条件判断,是因为第一次出现的字,在字典中不存在,dict[key],当key不存在时会报错。
方法二通过get(word,0)方法,获取,如果不存在,则默认加入并置为0,后面加1就恰好是统计的次数了。需要充分理解get方法。
方法三通过defaultdict(int),默认不存在时是0,都不用设置,显得更加简洁,大家细细品味。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13