
CDA数据分析师 出品
作者: Lydia Dishman
编译: Mika
LinkedIn通过对用户数据的深入挖掘,列出了美国最具吸引力的40强企业。
查看完整TOP40名单:
https://lists.linkedin.com/2016/top-attractors/en/us
前20名中只有可口可乐,Under Armour和Black Rock不属于科技行业。如今,许多企业都认为自己属于科技领域,比如高盛集团的CEO,他将这家金融公司称为科技公司。
同时值得注意的是,编程已经成为各行各业最重要的工作技能。
正如LinkedIn报告所指出的那样,随着每家公司都在进行技术驱动化转型,能否吸引更多人才将决定企业的兴衰。
在美国最受欢迎的40强企业中,谷歌位居首位。除了提供免费餐饮和按摩等福利外,谷歌还拥有支持多样性和打造“完美”团队的企业文化,这也是为什么谷歌能让顶尖的人才趋之若鹜。一位前谷歌招聘人员估计,他在一年内曾查看了300万份简历。
那么在顶尖公司工作需要哪些技能呢?
毋庸置疑,科技知识是必备技能之一。
同时,大数据平台Paysa的CEO兼联合创始人Chris Bolte表示,对于那些不具备传统计算机科学的人才来说,还有另一个趋势。
“近年来呈现爆炸性发展的是深度学习,”Bolte说,“这是利用神经网络的机器学习和人工智能的一个分支。”
简单的说,神经网络就像计算机内部由相互连接的脑细胞构成网络,可以解析图像或视频等信号。它能以人类的模式学会识别模式和做出决策。
“深度学习扩展了许多层,比之前计算力达到的层次更深,”Bolte解释说,“有了互联网巨头创造的数据量加上计算的进步,因此这些深度学习方法能够更完整地模拟信号。”
作为更广泛的技能,人工智能和机器学习为各种技术人才提供了机会。
微软的资深机器学习招聘人员Amanda Papp透露:“我们的员工中并非每个人都必须有计算机科学博士学位。还有许多人具有物理、生物学等背景。”
Paysa的数据显示,在顶尖科技公司中,编程技能仍然非常关键。
在谷歌,6万名员工中近一半(45%)会Java,42%的人使用Python。只有13%的人会Git(开源软件开发),14%的人掌握云计算技能。
谷歌中83%员工拥有学士学位,7%的人毕业于斯坦福大学。其他的毕业院校包括科罗拉多矿业学院,卡内基梅隆大学和都柏林大学等。
排名第二的Salesforce公司有2万名员工,但员工的技能特点与谷歌略有不同。46%的人掌握云计算技术,39%的人精通敏捷方法(软件开发的项目管理)。
80%的员工具有学士学位,毕业院校主要包括加州大学伯克利分校,东南大学,亚利桑那州立大学和伊利诺伊大学厄巴纳分校等学校。
在Facebook,熟练掌握编程语言至关重要。Paysa的数据显示,Facebook中46%的员工使用Java,44%的人使用Python。其他技能包括C ++,分布式系统,算法和机器学习等。
与前两家公司类似,大多数员工(84%)拥有学士学位,但同时42%的员工也拥有硕士学位。最近的一项研究表明,越来越多的雇主更青睐具有高学历的人才,这也证明了这点。
但苹果并不太推崇员工具备高学历。苹果公司的10万名员工中有71%具有学士学位,28%的员工并没有学位。这在一定程度上是因为,并非所有员工都在Cupertino总部从事开发工作。
苹果公司员工掌握的普遍技能也可以看出这点,其中软件开发占28%,其次是Java占27%。
排在第五位的是亚马逊,这家电子商务巨头从西雅图附近的华盛顿大学吸引了大量人才。其中83%的员工具有学士学位,超过一半(57%)的员工精通Java,45%掌握软件开发技能。
令人惊讶的是,作为为众多网站提供服务的公司而言,只有不到四分之一(21%)的人精通网络服务技能。
尽管Facebook和谷歌等注重技术实力,但这些公司在招聘时并不只看重硬技能。
谷歌人事业务负责人Laszlo Bock称,他们在招聘时需要看重以下四个方面:
1. 一般的认知能力
不仅仅是智力,还包括吸收信息的能力。
2. 应急式领导力
当你看到问题时,你会介入并尝试解决它。之后当不再需要你时,能及时放下,能够放下权力也很重要。
3. 文化契合力
我们称之为Googleyness(谷歌精神),包括上进心和团队精神、倾听及沟通能力等特质。
4. 职位的相关专业知识
这些技能对于刚开始找工作的求职者来说尤为重要。
根据PayScale的一项调查显示,招聘人员正在寻找具备沟通,团队合作和领导力等软技能的求职者。多达60%的雇主认为初级求职者缺乏批判性思维和解决问题的能力。
PayScale研究的共同发起人,Future Workplace的研究主管Dan Schawbel 曾表示,“每天如果没有新的挑战就不完整,越早掌握这些技能,你就越有可能被聘用。“
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13