
来源:Python爬虫与数据挖掘
作者: Python进阶者
大家好,我是Python进阶者。
大家好,我是Python进阶者,上个礼拜的时候,我的Python交流群里有个名叫程序的大佬,头像是绿色菜狗的那位,在Python交流群里边的人应该都知道我说的是哪个大佬了,他提供了一份初始淘宝数据,数据乍看上去非常杂乱无章,但是经过小小明大佬的神化处理之后,一秒就变清晰了,真是太神了,然后就有了后续的数据分词处理和可视化等内容了,可能群里的人平时工作太忙,没有来得及看群消息,作为热心的群主,这里给大家整理成一篇文章,感兴趣的小伙伴,可以去实操一下,还是可以学到很多东西的。言归正传,一起来学习下今天的数据分析内容吧。
1、原始数据
在未经过处理之前的数据,长这样,大家可以看看,全部存储在一个单元格里边了,看得十分的让人难受。如下图所示。
按照常规来说,针对上面的数据,我们肯定会选择Excel里边的数据分列进行处理,然后依次的去根据空格、冒号去分割,这样可以得到一份较为清晰的数据表,诚然,这种方法确实可行,但是小小明大佬另辟蹊径,给大家用Python中的正则表达式来处理这个数据,处理方法如下。
2、原始数据预处理
小小明大佬直接使用正则表达式re模块和pandas模块进行处理,方法可谓巧妙,一击即中,数据处理代码如下。
import re import pandas as pd
result = [] with open(r"淘宝数据.csv") as f: for line in f:
row = dict(re.findall("([^:t]+):([^:t]+)", line)) if row:
result.append(row)
df = pd.DataFrame(result)
df.to_excel('new_data.xlsx', encoding='utf-8')
print(df)
之后我们可以看到效果图,如下图所示,这下是不是感觉到清爽了很多呢?
至此,我们对原始的数据进行了预处理,但是这还不够,我们今天主要的目标是对上面数据中的两列:配料表和保质期进行数据分析,接下来继续我们的数据处理和分析。
一开始的时候,程序大佬对配料表和保质期这两列的数据进行处理,但是来回得到的分词中总有一些特殊字符,如下图所示,我们可以看到这些字符里边有%、顿号、空格等内容。
我们都知道,这些是我们不需要的字符,当时我们在群里讨论的时候,我们就想到使用停用词去针对这些扰人的字符进行处理,代码如下。
# 创建停用词list def stopwordslist(filepath): stopwords = [line.strip() for line in open(filepath, 'r', encoding='gbk').readlines()] return stopwords # 对句子进行分词 def seg_sentence(sentence): sentence_seged = jieba.cut(sentence.strip())
stopwords = stopwordslist('stop_word.txt') # 这里加载停用词的路径 outstr = '' for word in sentence_seged: if word not in stopwords: if word != 't':
outstr += word
outstr += " " return outstr
其中stop_word.txt是小编之前在网上找到的一个存放一些常用特殊字符的txt文件,这个文件内容可以看看下图。
如上图所示,大概有1894个词左右,其实在做词频分析的时候,使用停用词去除特殊字符是经常会用到的,感兴趣的小伙伴可以收藏下,也许后面你会用到呢?代码和数据我统一放到文末了,记得去取就行。经过这一轮的数据处理之后,我们得到的数据就基本上没有太多杂乱的字符了,如下图所示。
得到这些数据之后,接下来我们需要对这些词语做一些词频统计,并且对其进行可视化。如果还有想法的话,也可以直接套用词云模板,生成漂亮的词云图,也未尝不可。
关于词频统计这块,小编这里介绍两种方法,两个代码都是可以用的,条条大路通罗马,一起来看看吧!
方法一:常规处理
这里使用的是常规处理的方法,代码亲测可用,只需要将代码中的1.txt进行替换成你自己的那个需要分词统计的文档即可,然后系统会自动给你生成一个Excel表格和一个TXT文件,内容都是一样的,只不过一个是表格,一个是文本。
#!/usr/bin/env python3 # -*- coding:utf-8 -*- import sys import jieba import jieba.analyse import xlwt # 写入Excel表的库 # reload(sys) # sys.setdefaultencoding('utf-8') if __name__ == "__main__":
wbk = xlwt.Workbook(encoding='ascii')
sheet = wbk.add_sheet("wordCount") # Excel单元格名字 word_lst = []
key_list = [] for line in open('1.txt', encoding='utf-8'): # 1.txt是需要分词统计的文档 item = line.strip('nr').split('t') # 制表格切分 # print item tags = jieba.analyse.extract_tags(item[0]) # jieba分词 for t in tags:
word_lst.append(t)
word_dict = {} with open("wordCount_all_lyrics.txt", 'w') as wf2: # 打开文件 for item in word_lst: if item not in word_dict: # 统计数量 word_dict[item] = 1 else:
word_dict[item] += 1 orderList = list(word_dict.values())
orderList.sort(reverse=True) # print orderList for i in range(len(orderList)): for key in word_dict: if word_dict[key] == orderList[i]:
wf2.write(key + ' ' + str(word_dict[key]) + 'n') # 写入txt文档 key_list.append(key)
word_dict[key] = 0 for i in range(len(key_list)):
sheet.write(i, 1, label=orderList[i])
sheet.write(i, 0, label=key_list[i])
wbk.save('wordCount_all_lyrics.xls') # 保存为 wordCount.xls文件
方法二:使用Pandas优化处理
这里使用Pandas方法进行处理,代码如下,小编也是亲测有效,小伙伴们也可以去尝试下。
def get_data(df): # 将食品添加剂这一列空的数据设置为无 # print(df) df.loc[:,'食品添加剂'] = df['食品添加剂'].fillna('无')
df.loc[:,'保质期'] = df['保质期'].fillna('无')
df.loc[:, '配料表'] = df['配料表'].fillna('无') # 分词并扩展提取 names = df.配料表.apply(jieba.lcut).explode() # 过滤长度小于等于1的词并去重 df1 = names[names.apply(len) > 1].value_counts() with pd.ExcelWriter("taobao.xlsx") as writer:
df1.to_excel(writer, sheet_name='配料')
df2 = pd.read_excel('taobao.xlsx', header=None, skiprows=1, names=['column1', 'column2'])
print(df2)
上面两个代码都是可以用的,最后得到的表格数据,如下图所示。
从上图我们可以看到配料表里边的配料占比详情,有了上述的数据之后,接下来我们就可以对其进行可视化操作了。关于可视化的内容,小编也给大家已经准备好了,等待下一篇原创文章,给大家输出,敬请期待。
大家好,我是Python进阶者。本文写到这里,基本上就告一段落了。本文基于一份杂乱的淘宝原始数据,利用正则表达式re库和Pandas数据处理对数据进行清洗,然后通过stop_word停用词对得到的文本进行分词处理,得到较为”干净“的数据,之后利用传统方法和Pandas优化处理两种方式对数据进行词频统计,针对得到的数据,下一步将利用Pyecharts库,进行多重可视化处理,包括但不限于饼图、柱状图、Table表、漏斗图、极化图等,通过一系列的改进和优化,一步步达到想要的效果,可以说是干货满满,实操性强,亲测有效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11