京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:AirPython
作者:星安果
大家好,我是安果!
PgSQL,全称为 PostgreSQL,是一款免费开源的关系型数据库
相比最流行的 Mysql 数据库,PgSQL 在可靠性、数据完整性、扩展性方面具有绝对的优势
本篇文章将聊聊如何使用 Python 操作 PgSQL 数据库
Python 操作 PgSQL,需要先安装依赖包「 psycopg2 」
# 安装依赖包
pip3 install psycopg2
接下来,就可以使用 Python 来操作数据库了
2-1 数据库连接及游标对象
使用 psycopg2 中的「 connect() 」方法连接数据库,创建数据库连接对象及游标对象
import psycopg2
# 获得连接对象
# database:数据库名称
# user:用户名
# password:密码
# host:数据库ip地址
# port:端口号,默认为5432
conn = psycopg2.connect(database="db_name", user="postgres", password="pwd", host="127.0.0.1", port="5432")
# 获取游标对象
cursor = conn.cursor()
获取游标对象后,就可以执行 SQL,进而操作数据库了
2-2 插入数据
首先,编写插入数据的 SQL 语句及参数( 可选 )
# 构建SQL语句
# 方式一:直带参数
sql = "INSERT INTO student (name,age)
VALUES (%s, '%s')" %
('xag',23)
# 方式二:参数分离
sql = """INSERT INTO student (name,age) VALUES (%s, %s)"""
# 参数
params = ('xag',23)
然后,使用游标对象执行 SQL
# 执行sql
# 注意:params可选,根据上面的参数方式来选择设置
cursor.execute(sql,[params])
接着,使用连接对象提交事务
# 事务提交
conn.commit()
最后,释放游标对象及数据库连接对象
# 释放游标对象及数据库连接对象
cursor.close()
conn.close()
2-3 查询数据
游标对象的 fetchone()、fetchmany(size)、fetchall() 这 3个函数即可以实现单条数据查询、多条数据查询、全部数据查询
# 获取一条记录
one_data = cursor.fetchone()
print(one_data)
# 获取2条记录
many_data = cursor.fetchmany(2)
print(many_data)
# 获取全部数据
all_data = cursor.fetchall()
print(all_data)
需要注意的是,条件查询与上面的插入操作类似,条件语句可以将参数分离出来
# 条件查询 SQL语句
sql = """SELECT * FROM student where id = %s;"""
# 对应参数,参数结尾以逗号结尾
params = (1,)
# 执行SQL
cursor.execute(sql, params)
# 获取所有数据
datas = cursor.fetchall()
print(datas)
2-4 更新数据
更新操作和上面操作一样,唯一不同的是,执行完 SQL 后,需要使用连接对象提交事务,才能将数据真实更新到数据库中
def update_one(conn, cursor):
"""更新操作"""
# 更新语句
sql = """update student set name = %s where id = %s """
params = ('AirPython', 1,)
# 执行语句
cursor.execute(sql, params)
# 事务提交
conn.commit()
# 关闭数据库连接
cursor.close()
conn.close()
2-5 删除数据
删除数据同更新数据操作类似
def delete_one(conn, cursor):
"""删除操作"""
# 语句及参数
sql = """delete from student where id = %s """
params = (1,)
# 执行语句
cursor.execute(sql, params)
# 事物提交
conn.commit()
# 关闭数据库连接
cursor.close()
conn.close()
通过上面操作,可以发现 Python 操作 PgSQl 与 Mysql 类似,但是在原生 SQL 编写上两者还是有很多差异性
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27