
职场,就像是修罗场,有的人经历飞速成长阶段一步一步走向人生巅峰,也有的人迷茫在自己职场的方向,无法自拔。当然,职场上没有人不希望升职加薪,获得更多的晋升空间。
疫情期间,大多数白领都经历了一些“职场灰暗时刻”。裁员降薪一度成为较普遍的现象,年长白领的工作机会在变少,年轻白领的工资缩水。面对不确定的大环境,唯一的确定因素就是自身职场竞争力。由此可见,一个人如果想混的开,关键在于他能给企业带来什么样的价值。
如今,我们生活在数字化的浪潮下,在各行各业的发展中,数字化转型都是绕不开的话题。
企业在发展过程中会遇到大量的数据,它是数字化转型的基础,数据找不到、看不懂、不准确、不及时,都会成为企业数字化转型路上的重大阻碍,这个时候就需要用到数据分析师。
数据分析不是简单的“分析数据”,它是一种解决问题的方法,一个解决问题的过程,甚至可以认为是一种方法观。作为一名数据分析工作者,这里所说的数据分析是一个相对狭义的概念,如果没有合理的执行体系和标准化的工作流程,就会形成表面化的错误,从而影响到工作效率,更重要的是影响最终的分析结论,都说“按流程办事”,数据分析也不例外。
1、明确目的
用数据说话,从数据分析的角度解决问题,用数据支持结论。从监测角度来说,业务问题一般以两种方式出现,第一种是在长期监测中发现某一环节运行异常,另外一种是在开展业务任务时即时遇到阻碍,不管怎么样,问题摆在面前需要解决。
在开始数据分析之前,必须明确要分析什么,要解决什么问题,一项数据分析,不是一蹴而就,需要过程,如果不能做到有的放矢,多半会导致分析方向发生偏移,盲目无序的开头将导致后续的工作白白浪费。发生了什么?为什么要这样做?要得到什么?如何得到?等等这些问题需要在分析之前弄清楚,只有先明确了目的,对数据分析的主要内容有针对的了解,才能作出合理有效的解决方案。
2、获取数据
按照数据分析的目的、具体内容,收集所需数据,此时最重要的是保证获取数据的真实可靠性。这些数据源就像盖房子打地基,没有这个基础,不管采用多么高级的分析方法都是白费力气。“garbage in,garbage out”。另外,不要过于期望一口气将所有数据都采集全,在预处理和数据分析阶段你可能会发现还缺少某一部分数据源,这是反馈调节的过程,需要耗费大量的时间反复甄别。
3、预处理
现在存储于后台的数据太多了,以前做项目担心没有真实可靠的数据,现在这个问题没有那么复杂,但数据太多却引发了其他问题。辛苦采集到的数据口径不一致,存储格式不同,不符合数据分析要求还有待派生新的变量,这些过程看似简单却非常有必要!
仅仅预处理以上这些问题还不够,当数据分析方法复杂时,我们还需对采集的数据进行筛选构成小的数据集,对于数据集中变量的分布、缺少、描述统计指标进行一定程度的分析。可以说,获取数据+预处理将耗费整个执行过程的大部分时间,很繁琐,但非常的重要。
4、数据分析
在这个阶段建议采用简单有效的分析方法,切记不要“为了分析而分析”。数据分析方法有很多种,不一定越是高级的方法就越有效。数据分析的工具也一样,能用Excel就不用SPSS,选择合理得当高效的方法和工具,只要能解决问题即可。如果你很自信,可以合理选择有效驾驭,那选用一些高级的方法和工具对提高整个数据分析过程的共识性、专业性、精确性都有非常之大的帮助。
和前两个环节一样,这个过程也是费力不讨好的,而且伴有枯燥、沮丧、焦虑等心态,不断调整自己的心态也是这三个阶段的重点和关键。
5、提交报告
做一个数据分析的项目,不能不下结论!
雷声大,雨点小的事情,作为数据分析师千万要避免发生。提交数据分析报告,提出解决问题的方案或建议,对业务问题进行及时处理,养成这个良好的习惯。数据分析报告采用PPT格式、Word格式都可以,做到结构合理、结论坚定,图文并茂。
这个阶段切记不要搞得太花哨,语气低调不要太夸张,有自己的结论,有自己的观点,能有效解决问题,并针对类似问题进行监控,防止再次发生。
按流程办事的好处就在于各环节的不断反馈,出现偏差时返回到各个环节进行审核优化,突出解决问题的主线,总之一句话,数据分析不是儿戏,需要一个相对标准化的流程来遵循。
目前数据分析几乎覆盖了所有的行业,互联网、金融、咨询、电信、零售、医疗、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资、研发等。
这是在某招聘网站截取的数据分析师就业薪资,可以看到拥有一年工作经验的数据分析师薪资就可以达到10K以上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17