
职场,就像是修罗场,有的人经历飞速成长阶段一步一步走向人生巅峰,也有的人迷茫在自己职场的方向,无法自拔。当然,职场上没有人不希望升职加薪,获得更多的晋升空间。
疫情期间,大多数白领都经历了一些“职场灰暗时刻”。裁员降薪一度成为较普遍的现象,年长白领的工作机会在变少,年轻白领的工资缩水。面对不确定的大环境,唯一的确定因素就是自身职场竞争力。由此可见,一个人如果想混的开,关键在于他能给企业带来什么样的价值。
如今,我们生活在数字化的浪潮下,在各行各业的发展中,数字化转型都是绕不开的话题。
企业在发展过程中会遇到大量的数据,它是数字化转型的基础,数据找不到、看不懂、不准确、不及时,都会成为企业数字化转型路上的重大阻碍,这个时候就需要用到数据分析师。
数据分析不是简单的“分析数据”,它是一种解决问题的方法,一个解决问题的过程,甚至可以认为是一种方法观。作为一名数据分析工作者,这里所说的数据分析是一个相对狭义的概念,如果没有合理的执行体系和标准化的工作流程,就会形成表面化的错误,从而影响到工作效率,更重要的是影响最终的分析结论,都说“按流程办事”,数据分析也不例外。
1、明确目的
用数据说话,从数据分析的角度解决问题,用数据支持结论。从监测角度来说,业务问题一般以两种方式出现,第一种是在长期监测中发现某一环节运行异常,另外一种是在开展业务任务时即时遇到阻碍,不管怎么样,问题摆在面前需要解决。
在开始数据分析之前,必须明确要分析什么,要解决什么问题,一项数据分析,不是一蹴而就,需要过程,如果不能做到有的放矢,多半会导致分析方向发生偏移,盲目无序的开头将导致后续的工作白白浪费。发生了什么?为什么要这样做?要得到什么?如何得到?等等这些问题需要在分析之前弄清楚,只有先明确了目的,对数据分析的主要内容有针对的了解,才能作出合理有效的解决方案。
2、获取数据
按照数据分析的目的、具体内容,收集所需数据,此时最重要的是保证获取数据的真实可靠性。这些数据源就像盖房子打地基,没有这个基础,不管采用多么高级的分析方法都是白费力气。“garbage in,garbage out”。另外,不要过于期望一口气将所有数据都采集全,在预处理和数据分析阶段你可能会发现还缺少某一部分数据源,这是反馈调节的过程,需要耗费大量的时间反复甄别。
3、预处理
现在存储于后台的数据太多了,以前做项目担心没有真实可靠的数据,现在这个问题没有那么复杂,但数据太多却引发了其他问题。辛苦采集到的数据口径不一致,存储格式不同,不符合数据分析要求还有待派生新的变量,这些过程看似简单却非常有必要!
仅仅预处理以上这些问题还不够,当数据分析方法复杂时,我们还需对采集的数据进行筛选构成小的数据集,对于数据集中变量的分布、缺少、描述统计指标进行一定程度的分析。可以说,获取数据+预处理将耗费整个执行过程的大部分时间,很繁琐,但非常的重要。
4、数据分析
在这个阶段建议采用简单有效的分析方法,切记不要“为了分析而分析”。数据分析方法有很多种,不一定越是高级的方法就越有效。数据分析的工具也一样,能用Excel就不用SPSS,选择合理得当高效的方法和工具,只要能解决问题即可。如果你很自信,可以合理选择有效驾驭,那选用一些高级的方法和工具对提高整个数据分析过程的共识性、专业性、精确性都有非常之大的帮助。
和前两个环节一样,这个过程也是费力不讨好的,而且伴有枯燥、沮丧、焦虑等心态,不断调整自己的心态也是这三个阶段的重点和关键。
5、提交报告
做一个数据分析的项目,不能不下结论!
雷声大,雨点小的事情,作为数据分析师千万要避免发生。提交数据分析报告,提出解决问题的方案或建议,对业务问题进行及时处理,养成这个良好的习惯。数据分析报告采用PPT格式、Word格式都可以,做到结构合理、结论坚定,图文并茂。
这个阶段切记不要搞得太花哨,语气低调不要太夸张,有自己的结论,有自己的观点,能有效解决问题,并针对类似问题进行监控,防止再次发生。
按流程办事的好处就在于各环节的不断反馈,出现偏差时返回到各个环节进行审核优化,突出解决问题的主线,总之一句话,数据分析不是儿戏,需要一个相对标准化的流程来遵循。
目前数据分析几乎覆盖了所有的行业,互联网、金融、咨询、电信、零售、医疗、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资、研发等。
这是在某招聘网站截取的数据分析师就业薪资,可以看到拥有一年工作经验的数据分析师薪资就可以达到10K以上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27